Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 32, 2016 - Issue 1
493
Views
22
CrossRef citations to date
0
Altmetric
Articles

Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion

, , &
Pages 109-122 | Received 07 Oct 2015, Accepted 30 Nov 2015, Published online: 19 Jan 2016

References

  • Almahamedh HH, Williamson C, Spear JR, Mishra B, Olson DL. 2011. Identification of microorganisms and their effects on corrosion of carbon steels pipelines. Corrosion/2011, Paper No 11231. Houston (TX): NACE International.
  • Al-Shamari AR, Al-Mithin AW, Olabisi O, Mathew A. 2013. Developing a metric for microbiologically influenced corrosion (MIC) in oilfield water handling systems. Corrosion/2013, Paper No 2299. Orlando (FL): NACE International.
  • Armon R, Starosvetsky J, Dancygier M, Starosvetsky D. 2001. Adsorption of flavobacterium breve and pseudomonas fluorescens p17 on different metals: electrochemical polarization effect. Biofouling. 17:289–301.10.1080/08927010109378489
  • Ashton SA, King RA, Miller JDA. 1973. Protective film formation on ferrous metals in semicontinuous cultures of nitrate-reducing bacteria. Br Corros J. 8:132–136.10.1179/000705973798322215
  • ASTM. 2011a. Standard test methods for determining average grain size [standard E112–10]. West Conshohocken (PA): ASTM International. ASTM handbook 3.01 metals–mechanical testing; elevated and low-temperature tests; metallography; p. 287–312.
  • ASTM. 2011b. Standard test method for determining volume fraction by systematic manual point count [standard E562–11]. West Conshohocken (PA): ASTM handbook 3.01 metals–mechanical testing; elevated and low-temperature tests; metallography; p. 325–342.
  • ASTM. 2011c. Standard practice for preparing, cleaning, and evaluating corrosion test specimens [standard G1–03]. West Conshohocken (PA): ASTM International. ASTM handbook 3.02 corrosion of metals; wear and erosion; p. 20–28.
  • Beech IB, Cheung CWS, Chan CSP, Hill MA, Franco R, Lino AR. 1994. Study of parameters implicated in the biodeterioration of mild steel in the presence of different species of sulphate-reducing bacteria. Int Biodeterior Biodegrad. 34:289–303.10.1016/0964-8305(94)90089-2
  • Beech IB, Gaylarde CC. 1989. Attachment of Pseudomonas fluorescens and Desulfovibrio desulfuricans to mild and stainless steel – first step in biofilm formation. J Appl Bacteriol. 67:201–207.10.1111/jam.1989.67.issue-2
  • Beech IB, Sunner J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol. 15:181–186.10.1016/j.copbio.2004.05.001
  • Biezma MV. 1999. Microstructural features and the microbiologically influenced corrosion of stainless steels. In: Sequeira CAC, editor. Microbial Corrosion, European Federation of Corrosion publications. Proceedings of the 4th International EFC Workshop. Lisbon, Portugal: IOM Communications; p. 36–146.
  • Borenstein SW. 1988. Microbiologically influenced corrosion failures of austenitic stainless steel welds. Mater Perform. 27:62–66.
  • Borenstein SW. 1994. Microbiologically influenced corrosion handbook. Cambridge: Woodhead.10.1533/9781845698621
  • Busalmen JP, Sánchez SR. 2005. Electrochemical polarization-Induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552). App Environ Microbiol. 71:6235–6240.10.1128/AEM.71.10.6235-6240.2005
  • Campbell FC. 2012. Phase diagrams: understanding the basics. Introduction to Phase Diagrams. ASM Int. 3:1–13.
  • Coetser SE, Cloete TE. 2005. Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol. 31:213–232.10.1080/10408410500304074
  • Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. 2012. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci. 179–182:142–149.10.1016/j.cis.2012.06.015
  • de Damborenea JJ, Cristóbal AB, Arenas MA, López V, Conde A. 2007. Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity. Mater Lett. 61:821–823.10.1016/j.matlet.2006.05.066
  • Duan DX, Lin CG. 2011. Effect of surface free energy and electrochemical polarization on attachment of sulfate reducing bacteria. Adv Mater Res. 199–200:1967–1972.10.4028/www.scientific.net/AMR.199-200
  • Franklin M, White DC, Little BJ, Ray R, Pope R. 2000. The role of bacteria in pit propagation of carbon steel. Biofouling. 15:13–23.10.1080/08927010009386294
  • Gaylarde CC, Johnson JM. 1980. The importance of microbial adhesion in anaerobic metal corrosion. In: Berkeley RCW, Lynch JM, Melling J, Rutter PR, Vincent B, editors. Microbial adhesion to surfaces. Chichester: Ellis Horwood; p. 511–513.
  • Geesey GG, Gillis RJ, Avci R, Daly D, Hamilton M, Shope P, Harkin G. 1996. The influence of surface features on bacterial colonization and subsequent substratum chemical changes of 316L stainless steel. Corros Sci. 38:73–95.10.1016/0010-938X(96)00105-9
  • George RP, Muraleedharan P, Sreekumari KR, Khatak HS. 2003. Influence of surface characteristics and microstructure on adhesion of bacterial cells onto a type 304 stainless steel. Biofouling. 19:1–8.10.1080/08927010290031017
  • Gordon AS, Gerchakov SM, Udey LR. 1981. The effect of polarization on the attachment of marine bacteria to copper and platinum surfaces. Can J Microbiol. 27:698–703.10.1139/m81-108
  • Gutman ÉM, Zamostyanik IE, Karpenko GV. 1972. Micro-electrochemical heterogeneity of ferric-pearlitic structures. Soviet materials science: a transl. of Fiziko-khimicheskaya mekhanika materialov/Academy of Sciences of the Ukrainian SSR. 5:406–407.
  • Hilbert LR, Bagge-Ravn D, Kold J, Gram L. 2003. Influence of surface roughness of stainless steel on microbial adhesion and corrosion resistance. Int Biodeterior Biodegrad. 52:175–185.
  • Ibars JR, Moreno DA, Ranninger C. 1992. MIC of stainless steels: a technical review on the influence of microstructure. Int Biodeterior Biodegrad. 29:343–355.10.1016/0964-8305(92)90051-O
  • ISO. 1996. Geometrical Product Specifications (GPS) – surface texture: profile method – rules and procedures for the assessment of surface texture. Available from: http://www.iso.org/iso/home.html
  • Javed MA, McArthur SL, Stoddart PR, Wade SA. 2013. Techniques for studying initial bacterial attachment and subsequent corrosion. Corros Preven/2013. Paper No 064. Brisbane (AU): Australian Corrosion Association.
  • Javed MA, Stoddart PR, McArthur SL, Wade SA. 2013. The effect of metal microstructure on the initial attachment of Escherichia coli to 1010 carbon steel. Biofouling. 29:939–952.10.1080/08927014.2013.820826
  • Javed MA, Stoddart PR, Palombo EA, McArthur SL, Wade SA. 2014. Inhibition or acceleration: bacterial test media can determine the course of microbiologically influenced corrosion. Corros Sci. 86:149–158.10.1016/j.corsci.2014.05.003
  • Kielemoes J, Hammes F, Verstraete W. 2000. Measurement of microbial colonisation of two types of stainless steel. Environ Tech. 21:831–843.10.1080/09593330.2000.9618970
  • Krauss G. 2003. Properties and selection: irons, steels, and high performance alloys. Microstructures, processing, and properties of steels. ASM Int. 1:211–232.
  • Little BJ, Lee JS. 2007. Microbiologically influenced corrosion. Hoboken (NJ): Wiley.10.1002/047011245X
  • Little BJ, Ray RI, Wagner PA, Jones-Meehan J, Lee CC, Mansfeld F. 1999. Spatial relationships between marine bacteria and localized corrosion on polymer coated steel. Biofouling. 13:301–321.10.1080/08927019909378387
  • Little BJ, Wagner P, Angell P, White D. 1996. Correlation between localized anodic areas and Oceanospirillum biofilms on copper. Int Biodeterior Biodegrad. 37:159–162.10.1016/S0964-8305(96)00014-5
  • Mara DD, Williams DJA. 1972. Influence of the microstructure of ferrous metals on the rate of microbial corrosion. Br Corros J. 7:139–142.10.1179/000705972798323062
  • Medilanski E, Kaufmann K, Wick LY, Wanner O, Harms H. 2002. Influence of the surface topography of stainless steel on bacterial adhesion. Biofouling. 18:193–203.10.1080/08927010290011370
  • Nithila SDR, George RP, Anandkumar B, Kamachi MU, Dayal RK. 2012. Effect of applied potential to control bacterial adhesion on titanium a condenser material of nuclear power plants. Trans Ind Inst Met. 65:251–258.10.1007/s12666-012-0126-9
  • Noel JJ. 2003. Corrosion: fundamentals, testing, and protection. Effect of metallurgical variables on aqueous corrosion. ASM Int. 13:258–265.
  • Rodin VB, Jigletsova SK, Kobelev VS, Akimova NA, Aleksandrova NV, Rasulova GE, Kholodenko VP. 2000. Development of biological methods for controlling the aerobic microorganism-induced corrosion of carbon steel. App Biochem Microbiol. 36:589–593.10.1023/A:1026600807856
  • Schaule G, Rumpf A, Weidlich C, Mangold KM, Flemming HC. 2008. Effects of electric polarization of indium tin oxide (ITO) and polypyrrole on biofilm formation. Water Sci Tech. 58:2165–2172.10.2166/wst.2008.529
  • Shoesmith DW. 1992. Corrosion: effect of metallurgical variables on aqueous corrosion. ASM Int. 13:73–81.
  • Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE, Bongiorno G, Podestà A, Lenardi C, Gade WN, Milani P. 2011. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLoS one. 6:1–12.
  • Sreekumari KR, Kikuhi Y, Nandakumar K. 2004. Effect of metal microstructure on bacterial attachment: A contributing factor for preferential MIC attack of welds. Corrosion/2004, Paper No 04597. Louisiana (NO): NACE International.
  • Sreekumari KR, Nandakumar K, Kikuchi Y. 2001. Bacterial attachment to stainless steel welds: Significance of substratum microstructure. Biofouling. 17:303–316.10.1080/08927010109378490
  • Stein AA 1991. Metallurgical factors affecting the resistance of 300 series stainless steel to microbiologically influenced corrosion. In: Sequeira CAC, editor. Microbial corrosion, European federation of corrosion publications. Proceedings of the 2nd International EFC Workshop; March 3–6; Sesimbra (Portugal); p. 67–80.
  • Truong VK, Lapovok R, Estrin YS, Rundell S, Wang JY, Fluke CJ, Crawford RJ, Ivanova EP. 2010. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials. 31:3674–3683.10.1016/j.biomaterials.2010.01.071
  • Walsh D, Pope D, Danford M, Huff T. 1993. Effect of microstructure on microbiologically influenced corrosion. JOM. 45:26–30.
  • Yuan SJ, Pehkonen SO, Ting YP, Kang ET, Neoh KG. 2008. Corrosion behavior of type 304 stainless steel in a simulated seawater-based medium in the presence and absence of aerobic pseudomonas NCIMB 2021 bacteria. Ind Eng Chem Res. 47:3008–3020.
  • Zintel TP, Kostuck DA, Cookingham BA. 2003. Evaluation of chemical treatments in natural gas systems vs. MIC and other forms of internal corrosion using carbon steel coupons. Corrosion/2003, Paper No 03574. Houston (TX): NACE International.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.