Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 32, 2016 - Issue 7
567
Views
46
CrossRef citations to date
0
Altmetric
Articles

The effect of carbon nanotubes and titanium dioxide incorporated in PDMS on biofilm community composition and subsequent mussel plantigrade settlement

, , , , , , & show all
Pages 763-777 | Received 07 Dec 2015, Accepted 30 May 2016, Published online: 27 Jun 2016

References

  • Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Gaskins HR, Stumpf RM, Yildirim S, Torralba M, et al. 2013. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7:1344–1353. doi: 10.1038/ismej.2013.16
  • Anderson C, Atlar M, Callow M, Candries M, Townsin RL. 2003. The development of foul-release coatings for seagoing vessels. J Mar Des Oper. 84:11–23.
  • Bao WY, Satuito CG, Yang JL, Kitamura H. 2007. Larval settlement and metamorphosis of the mussel Mytilus galloprovincialis in response to biofilms. Mar Biol. 150:565–574.
  • Bao WY, Yang JL, Satuito CG, Kitamura H. 2007. Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: evidence for two chemical cues? Mar Biol. 152:657–666. doi:10.1007/s00227-007-0720-2
  • Beigbeder A, Degee P, Conlan SL, Mutton RJ, Clare AS, Pettitt ME, Callow ME, Callow JA, Dubois P. 2008. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings. Biofouling. 24:291–302. doi:10.1080/08927010802162885
  • Beigbeder A, Jeusette M, Mincheva R, Claes M, Brocorens P, Lazzaroni R, Dubois P. 2009. On the effect of carbon nanotubes on the wettability and surface morphology of hydrosilylation-curing silicone coatings. J Nanostr Polym Nanocomp. 5:37–43.
  • Beigbeder A, Mincheva R, Pettitt ME, Callow ME, Callow JA, Claes M, Dubois P. 2010. Marine fouling release silicone/carbon nanotube nanocomposite coatings: on the importance of the nanotube dispersion state. J Nanosci Nanotechnol. 10:2972–2978. 10.1166/jnn.2010.2185
  • Brady-Estévez AS, Kang S, Elimelech M. 2008. A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small. 4:481–484. doi:10.1002/smll.200700863
  • Briand JF, Djeridi I, Jamet D, Coupé S, Bressy C, Molmeret M, Le Berre BL, Rimet F, Bouchez A, Blache Y. 2012. Pioneer marine biofilms on artificial surfaces including antifouling coatings immersed in two contrasting French Mediterranean coast sites. Biofouling. 28:453–463. doi:10.1080/08927014.2012.688957
  • Callow JA, Callow ME. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2:803–814.
  • Callow ME, Jennings AR, Brennan AB, Seegert CE, Gibson A, Wilson L, Feinberg A, Baney R, Callow JA. 2002. Microtopographic cues for settlement of zoospores of the green fouling alga enteromorpha. Biofouling. 18:229–236. doi:10.1080/08927010290014908
  • Campbell AH, Meritt DW, Franklin RB, Boone EL, Nicely CT, Brown BL. 2011. Effects of age and composition of field-produced biofilms on oyster larval setting. Biofouling. 27:255–265. doi:10.1080/08927014.2011.560384
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, et al. 2010. QIIME allows analysis of highthroughput community sequencing data. Nat Meth. 7:335–336.
  • Carl C, Poole AJ, Sexton BA, Glenn FL, Vucko MJ, Williams MR, Whalan S, de Nys R. 2012. Enhancing the settlement and attachment strength of pediveligers of Mytilus galloprovincialis by changing surface wettability and microtopography. Biofouling. 28:175–186. doi:10.1080/08927014.2012.662676
  • Carl C, Poole AJ, Vucko MJ, Williams MR, Whalan S, de Nys R. 2012. Enhancing the efficacy of fouling-release coatings against fouling by Mytilus galloprovincialis using nanofillers. Biofouling. 28:1077–1091. doi:10.1080/08927014.2012.728588
  • Cassé F, Swain GW. 2006. The development of microfouling on four commercial antifouling coatings under static and dynamic immersion. Int Biodeterior Biodegr. 57:179–185. doi:10.1016/j.ibiod.2006.02.008
  • Chaudhury MK, Finlay JA, Chung JY, Callow ME, Callow JA. 2005. The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorpha linza) from poly(dimethylsiloxane) (PDMS) model networks. Biofouling. 21:41–48. doi:10.1080/08927010500044377
  • Chen CL, Maki JS, Rittschof D, Teo SLM. 2013. Early marine bacterial biofilm on a copper-based antifouling paint. Int Biodeter Biodegr. 83:71–76. doi:10.1016/j.ibiod.2013.04.012
  • Chung HC, Lee OO, Huang YL, Mok SY, Kolter R, Qian PY. 2010. Bacterial community succession and chemical profiles of subtidal biofilms in relation to larval settlement of the polychaete Hydroides elegans. ISME J. 4:817–828. doi:10.1038/ismej.2009.157
  • Clarke KR, Warwick RM. 1994. Change in marine communities: an approach to statistical analysis and interpretation. Plymouth: Plymouth Marine Laboratory.
  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. 2013. Carbon nanotubes: present and future commercial applications. Science. 339:535–539. doi:10.1126/science.1222453
  • Dobretsov S. 2009. Inhibition and induction of marine biofouling by biofilms. In: Flemming HC, Murthy PS, Venkatesan R, Cooksey K, editors. Marine and industrial biofouling. Berlin:Springer; p. 293–313. doi:10.1007/978-3-540-69796-1
  • Dobretsov S, Qian PY. 2004. The role of epibotic bacteria from the surface of the soft coral Dendronephthya sp. in the inhibition of larval settlement. J Exp Mar Biol Ecol. 299:35–50. doi:10.1016/j.jembe.2003.08.011
  • Dobretsov S, Qian PY. 2006. Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms. J Exp Mar Biol Ecol. 333:263–274. doi:10.1016/j.jembe.2006.01.019
  • Dobretsov S, Thomason JC. 2011. The development of marine biofilms on two commercial non-biocidal coatings: a comparison between silicone and fluoropolymer technologies. Biofouling. 27(8):869–880. doi:10.1080/08927014.2011.607233
  • Dobretsov S, Abed RMM, Teplitski M. 2013. Mini-review: Inhibition of biofouling by marine microorganisms. Biofouling. 29:423–441.doi:10.1080/08927014.2013.776042
  • Dobretsov S, Abed RMM, Voolstra CR. 2013. The effect of surface colour on the formation of marine micro and macrofouling communities. Biofouling. 29:617–627.doi:10.1080/08927014.2013.784279
  • Dobretsov S, Thomason JC, Williams DN. 2014. Biofouling methods. 1st ed. Oxford: Wiley-Blackwell. doi:10.1002/9781118336144
  • Dong X, Yang L. 2014. Inhibitory effects of single-walled carbon nanotubes on biofilm formation from Bacillus anthracis spores. Biofouling. 30:1165–1174. doi:10.1080/08927014.2014.975797
  • Evans SM. 1999. TBT or not TBT? That is the question. Biofouling. 14:117–129. doi:10.1080/08927019909378403
  • Foster HA, Ditta IB, Varghese S, Steele A. 2011. Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol. 90:1847–1868. doi:10.1007/s00253-011-3213-7
  • Fujishima A, Zhang X, Tryk DA. 2008. TiO2 photocatalysis and related surface phenomena. Surf Sci Rep. 63:515–582. doi:10.1016/j.surfrep.2008.10.001
  • Gu JD. 2003. Microbiological deterioration and degradation of synthetic polymeric materials: recent research advances. Int Biodeter Biodegr. 52:69–91. doi:10.1016/S0964-8305(02)00177-4
  • Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu Rev Mar Sci. 3:453–470. doi:10.1146/annurev-marine-120709-142753
  • Hajkova P, Spatenka P, Horsky J, Horska I, Kolouch A. 2007. Photocatalytic effect of TiO2 films on viruses and bacteria. Plasma Process Polym. 4:S397–S401. doi:10.1002/(ISSN)1612-8869
  • Hibbs MR, Hernandez-Sanchez BA, Daniels J, Stafslien SJ. 2015. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling. Biofouling. 31:613–624. doi:10.1080/08927014.2015.1081179
  • Huggett MJ, Nedved BT, Hadfield MG. 2009. Effects of initial surface wettability on biofilm formation and subsequent settlement of Hydroides elegans. Biofouling. 25:387–399. doi:10.1080/08927010902823238
  • Kang S, Pinault M, Pfefferle LD, Elimelech M. 2007. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir. 23:8670–8673. doi:10.1021/la701067r
  • Kavanagh CJ, Quinn RD, Swain GW. 2005. Observations of barnacle detachment from silicones using high-speed video. J Adhesion. 81:843–868. doi:10.1080/00218460500189331
  • Khan ST, Al-Khedhairy AA, Musarrat J. 2015. ZnO and TiO2 nanoparticles as novel antimicrobial agents for oral hygiene: a review. J Nanopart Res. 17:276. doi:10.1007/s11051-015-3074-6
  • Kim SH, Kwak SY, Sohn BH, Park TH. 2003. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J Membrane Sci. 211:157–165. doi:10.1016/S0376-7388(02)00418-0
  • Kirschner CM, Brennan AB. 2012. Bio-inspired antifouling strategies. Annu Rev Marter Res. 42:211–229. doi:10.1146/annurev-matsci-070511-155012
  • Kiwi J, Nadtochenko V. 2005. Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the TiO2 interface by ATR-FTIR and laser kinetic spectroscopy. Langmuir. 21:4631–4641. doi:10.1021/la046983l
  • Kubacka A, Diez MS, Rojo D, Bargiela R, Ciordia S, Zapico I, Albar JP, Barbas C, Martins dos Santos VAP, Fernández-García M, Ferrer M. 2014. Understanding the antimicrobial mechanism of TiO2-based nanocomposite films in a pathogenic bacterium. Sci Rep. 4:4134. doi:10.1038/srep04134
  • Lau SCK, Thiyagarajan V, Qian PY. 2003. The bioactivity of bacterial isolates in Hong Kong waters for the inhibition of barnacle (Balanus amphitrite Darwin) settlement. J Exp Mar Biol Ecol. 282:43–60. doi:10.1016/S0022-0981(02)00445-8
  • Lau SCK, Thiyagarajan V, Cheung SCK, Qian PY. 2005. Roles of bacterial community composition in biofilms as a mediator for larval settlement of three marine invertebrates. Aquat Microb Ecol. 38:41–51. doi:10.3354/ame038041
  • Lee C, Hong C, Kim H, Kang J, Zheng HM. 2010. TiO2 nanotubes as a therapeutic agent for cancer thermotherapy. Photochem Photobiol. 86:981–989. doi:10.1111/j.1751-1097.2010.00731.x
  • Li YF, Chen YR, Yang JL, Bao WY, Guo XP, Liang X, Shi ZY, Li JL, Ding DW. 2014. Effects of substratum type on bacterial community structure in biofilms in relation to settlement of plantigrades of the mussel Mytilus coruscus. Int Biodeter Biodegr. 96:41–49. doi:10.1016/j.ibiod.2014.08.012
  • Li YF, Guo XP, Yang JL, Liang X, Bao WY, Shen PJ, Shi ZY, Li JL. 2014. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus. Aquaculture. 433:434–441. doi:10.1016/j.aquaculture.2014.06.031
  • Ling GC, Low MH, Erken M, Longford S, Nielsen S, Poole AJ, Steinberg P, McDougald D, Kjelleberg S. 2014. Micro-fabricated polydimethyl siloxane (PDMS) surfaces regulate the development of marine microbial biofilm communities. Biofouling. 30:323–335. doi:10.1080/08927014.2013.872778
  • Maki JS, Mitchell R. 2002. Biofouling in the marine environment. In: Bitton G, editor. Encyclopedia of environmental microbiology. New York: Wiley; p. 610–619.
  • Maki JS, Rittschof D, Costlow JD, Mitchell R. 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar Biol. 97:199–206. doi:10.1007/BF00391303
  • Maki JS, Rittschof D, Samuelsson MO, Szewzyk U, Yule AB, Kjelleberg S, Costlow JD, Mitchell R. 1990. Effect of marine bacteria and their exopolymers on the attachment of barnacle cypris larvae. Bull Mar Sci. 46:499–511.
  • Molino PJ, Campbell E, Wetherbee R. 2009. Development of the initial diatom microfouling layer on antifouling and fouling-release surfaces in temperate and tropical Australia. Biofouling. 25:685–694. doi:10.1080/08927010903089912
  • Muthukrishnan T, Abed RMM, Dobretsov S, Kidd B, Finnie AA. 2014. Long-term microfouling on commercial biocidal fouling control coatings. Biofouling. 30:1155–1164. doi:10.1080/08927014.2014.972951
  • Olsen SM, Pedersen LT, Laursen MH, Kiil S, Dam-Johansen K. 2007. Enzyme-based antifouling coatings: a review. Biofouling. 23:369–383. doi:10.1080/08927010701566384
  • Patel P, Callow ME, Joint I, Callow JA. 2003. Specificity in the settlement–modifying response of bacterial biofilms towards zoospores of the marine alga Enteromorpha. Env Microbiol. 5:338–349. doi:10.1046/j.1462-2920.2003.00407.x
  • Qian PY, Thiyagarajan V, Lau SCK, Cheung SCK. 2003. Relationship between bacterial community profile in biofilm and attachment of the acorn barnacle Balanus amphitrite. Aquat Microb Ecol. 33:225–237. doi:10.3354/ame033225
  • Qian PY, Lau SCK, Dahms HU, Dobretsov S, Harder T. 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotech. 9:399–410. doi:10.1007/s10126-007-9001-9
  • Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF. 2013. Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol. 15:2879–2893.
  • Sathe P, Richter J, Myint MTZ, Dobretsov S, Dutta J. 2016. Self-decontaminating photocatalytic zinc oxide nanorod coatings for prevention of marine microfouling: a mesocosm study. Biofouling. 32:383–395. doi:10.1080/08927014.2016.1146256
  • Satuito CG, Natoyama K, Yamazaki M, Fusetani N. 1995. Induction of attachment and metamorphosis of laboratory cultured mussel Mytilus edulis galloprovincialis larvae by microbial film. Fish Sci. 61:223–227.
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi:10.1080/08927014.2010.542809
  • Stafslien SJ, Christianson D, Daniels J, VanderWal L, Chernykh A, Chisholm BJ. 2015. Combinatorial materials research applied to the development of new surface coatings XV1: fouling-release properties of amphiphilic polysiloxane coatings. Biofouling. 31:135–149. doi:10.1080/08927014.2014.1003295
  • Wang C, Bao WY, Gu ZQ, Li YF, Liang X, Ling Y, Cai SL, Shen HD, Yang JL. 2012. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms. Biofouling. 28:249–256. doi:10.1080/08927014.2012.671303
  • Wieczorek SK, Clare AS, Todd CD. 1995. Inhibitory and facilitatory effects of microbial films on settlement of Balanus amphitrite amphitrite larvae. Mar Ecol Prog Ser. 119:221–228. doi:10.3354/meps119221
  • Yang JL, Satuito CG, Bao WY, Kitamura H. 2007. Larval settlement and metamorphosis of the mussel Mytilus galloprvincialis on different macroalgae. Mar Biol. 152:1121–1132. doi:10.1007/s00227-007-0759-0
  • Yang JL, Shen PJ, Liang X, Li YF, Bao WY, Li JL. 2013. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling. 29:247–259. doi:10.1080/08927014.2013.764412
  • Yazhini KB, Prabu HG. 2015. Antibacterial activity of cotton coated with ZnO and ZnO-CNT composites. Appl Biochem Biotechnol. 175:85–92. doi:10.1007/s12010-014-1257-8
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology - past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104. doi:10.1016/j.porgcoat.2003.06.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.