Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 32, 2016 - Issue 8
702
Views
19
CrossRef citations to date
0
Altmetric
Articles

Impact of oxidative and osmotic stresses on Candida albicans biofilm formation

, , , &
Pages 897-909 | Received 02 Apr 2016, Accepted 05 Jul 2016, Published online: 29 Jul 2016

References

  • Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, Kjelleberg S, Molin S, Givskov M, Tolker-Nielsen T. 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol. 59:1114–1128. doi:10.1111/j.1365-2958.2005.05008.x
  • Arana DM, Alonso-Monge R, Du C, Calderone R, Pla J. 2007. Differential susceptibility of mitogen-activated protein kinase pathway mutants to oxidative-mediated killing by phagocytes in the fungal pathogen Candida albicans. Cell Microbiol. 9:1647–1659. doi:10.1111/j.1462-5822.2007.00898.x
  • Brown AJP, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, Ene IV, Bohovych I, Sandai D, Kastora S, et al. 2014. Stress adaptation in a pathogenic fungus. J Exp Biol. 217:144–155. doi:10.1242/jeb.088930
  • Cáp M, Váchová L, Palková Z. 2012. Reactive oxygen species in the signaling and adaptation of multicellular microbial communities. Oxidative Med Cell Longev. 2012:976753. doi:10.1155/2012/976753
  • Comte S, Guibaud G, Baudu M. 2006. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb Technol. 38:237–245. doi:10.1016/j.enzmictec.2005.06.016
  • Das T, Manefield M. 2012. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLOS ONE. 7:e46718. doi:10.1371/journal.pone.0046718
  • de Groot PW, de Boer AD, Cunningham J, Dekker HL, de Jong L, Hellingwerf KJ, de Koster C, Klis FM. 2004. Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell. 3:955–965. doi:10.1128/EC.3.4.955-965.2004
  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal Chem. 28:350–356. doi:10.1021/ac60111a017
  • Enjalbert DB, Nantel A, Whiteway M. 2003. Stress-induced gene expression in Candida albicans: absence of a general stress response. Mol Biol Cell. 14:1460–1467. doi:10.1091/mbc.E02-08-0546
  • Enjalbert B, Smith DA, Cornell MJ, Alam I, Nicholls S, Brown AJP, Quinn J. 2006. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol Biol Cell. 17:1018–1032. doi:10.1091/mbc.E05-06-0501
  • Fekete A, Emri T, Gyetvai A, Gazdag Z, Pesti M, Varga Z, Balla J, Cserháti C, Emody L, Gergely L, et al. 2007. Development of oxidative stress tolerance resulted in reduced ability to undergo morphologic transitions and decreased pathogenicity in a t-butylhydroperoxide-tolerant mutant of Candida albicans. FEMS Yeast Res. 7:834–847. doi:10.1111/j.1567-1364.2007.00244.x
  • Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B. 2005. Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol. 56:397–415. doi:10.1111/j.1365-2958.2005.04557.x
  • Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d’Enfert C, Hube B. 2003. Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol. 47:1523–1543. doi:10.1046/j.1365-2958.2003.03396.x
  • Ghannoum MA. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 13:122–143. doi:10.1128/CMR.13.1.122-143.2000
  • Hawser S. 1996. Comparisons of the susceptibilities of planktonic and adherent Candida albicans to antifungal agents: a modified XTT tetrazolium assay using synchronised C. albicans cells. J Med Vet Mycol. 34:149–152. doi:10.1080/02681219680000231
  • Heilmann CJ, Sorgo AG, Mohammadi S, Sosinska GJ, de Koster CG, Brul S, de Koning LJ, Klis FM. 2013. Surface stress induces a conserved cell wall stress response in the pathogenic fungus Candida albicans. Eukaryot Cell. 12:254–264. doi:10.1128/EC.00278-12
  • Jakubowski W, Biliński T, Bartosz G. 2000. Oxidative stress during aging of stationary cultures of the yeast Saccharomyces cerevisiae. Free Radic Biol Med. 28:659–664. doi:10.1016/S0891-5849(99)00266-X
  • Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. 2004. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol. 49:789–798. doi:10.1016/j.archoralbio.2004.04.011
  • Jouault T, Bernigaud A, Lepage G, Trinel PA, Poulain D. 1994. The Candida albicans phospholipomannan induces in vitro production of tumour necrosis factor-alpha from human and murine macrophages. Immunology. 83:268–273.
  • Klipp E, Nordlander B, Krüger R, Gennemark P, Hohmann S. 2005. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol. 23:975–982. doi:10.1038/nbt1114
  • Kojic EM, Darouiche RO. 2004. Candida infections of medical devices. Clin Microbiol Rev. 17:255–267. doi:10.1128/CMR.17.2.255-267.2004
  • Koyama T, Makita M, Shibata N, Okawa Y. 2009. Influence of oxidative and osmotic stresses on the structure of the cell wall mannan of Candida albicans serotype A. Carbohydr Res. 344:2195–2200. doi:10.1016/j.carres.2009.08.002
  • Kühn C, Klipp E. 2012. Zooming in on yeast osmoadaptation. Adv Exp Med Biol. 736:293–310. doi:10.1007/978-1-4419-7210-1_17
  • Li D, Gurkovska V, Sheridan M, Calderone R, Chauhan N. 2004. Studies on the regulation of the two-component histidine kinase gene CHK1 in Candida albicans using the heterologous lacZ reporter gene. Microbiology. 150:3305–3313. doi:10.1099/mic.0.27237-0
  • Lorenz MC, Bender JA, Fink GR. 2004. Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell. 3:1076–1087. doi:10.1128/EC.3.5.1076-1087.2004
  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLOS Pathog. 5:e1000354. doi:10.1371/journal.ppat.1000354
  • Martinez LR, Casadevall A. 2007. Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol. 73:4592–4601. doi:10.1128/AEM.02506-06
  • Mavor AL, Thewes S, Hube B. 2005. Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets. 6:863–874. doi:10.2174/138945005774912735
  • Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence. 4:119–128. doi:10.4161/viru.22913
  • Miyakawa Y, Kuribayashi T, Kagaya K, Suzuki M, Nakase T, Fukazawa Y. 1992. Role of specific determinants in mannan of Candida albicans serotype A in adherence to human buccal epithelial cells. Infect Immun. 60:2493–2499.
  • Moryl M, Kaleta A, Strzelecki K, Rózalska S, Rózalski A. 2014. Effect of nutrient and stress factors on polysaccharides synthesis in Proteus mirabilis biofilm. Acta Biochim Pol. 61:133–139.
  • Naglik JR, Challacombe SJ, Hube B. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 67:3400–3428. doi:10.1128/MMBR.67.3.400-428.2003
  • Nelson RD, Shibata N, Podzorski RP, Herron MJ. 1991. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin Microbiol Rev. 4:1–19.
  • Nicholls S, MacCallum DM, Kaffarnik FA, Selway L, Peck SC, Brown AJ. 2011. Activation of the heat shock transcription factor Hsf1 is essential for the full virulence of the fungal pathogen Candida albicans. Fungal Genet Biol. 48:297–305. doi:10.1016/j.fgb.2010.08.010
  • Patterson MJ, McKenzie CG, Smith DA, da Silva Dantas A, Sherston S, Veal EA, Morgan BA, MacCallum DM, Erwig LP, Quinn J. 2013. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape Antiox Redox. Signal. 19:2244–2260. doi:10.1089/ars.2013.5199
  • Pemmaraju SC, Pruthi PA, Prasad R, Pruthi V. 2016. Modulation of Candida albicans biofilm by different carbon sources. Mycopathologia. 181:341–352. doi:10.1007/s11046-016-9992-8
  • Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, Ramage G, Lopez-Ribot JL. 2008. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 3:1494–1500. doi:10.1038/nport.2008.141
  • Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W. 2000. Alternative transcription factor ςB is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol. 182:6824–6826.
  • Santana IL, Gonçalves LM, de Vasconcellos AA, da Silva WJ, Cury JA, Cury AADB. 2013. Dietary carbohydrates modulate Candida albicans biofilm development on the denture surface. PLOS ONE. 8(e64645):e64645. doi:10.1371/journal.pone.0064645
  • Sen M, Shah B, Rakshit S, Singh V, Padmanabhan B, Ponnusamy M, Pari K, Vishwakarma R, Nandi D, Sadhale PP. 2011. UDP-glucose 4, 6-dehydratase activity plays an important role in maintaining cell wall integrity and virulence of Candida albicans. PLOS Pathog. 7:e1002384. doi:10.1371/journal.ppat.1002384
  • Taff HT, Nett JE, Andes DR. 2012. Comparative analysis of Candida biofilm quantitation assays. Med Mycol. 50:214–218. doi:10.3109/13693786.2011.580016
  • Taniguchi L, de Fátima Faria B, Rosa RT, de Paula E, Carvalho A, Gursky LC, Elifio-Esposito SL, Parahitiyawa N, Samaranayake LP, Rosa EA. 2009. Proposal of a low-cost protocol for colorimetric semi-quantification of secretory phospholipase by Candida albicans grown in planktonic and biofilm phases. J Microbiol Methods. 78:171–174. doi:10.1016/j.mimet.2009.05.012
  • Trinel PA, Maes E, Zanetta JP, Delplace F, Coddeville B, Jouault T, Strecker G, Poulain D. 2002. Candida albicans phospholipomannan, a new member of the fungal mannoseinositolphosphoceramide family. J Biol Chem. 277:37260–37271. doi:10.1074/jbc.M202295200
  • Ullmann BD, Myers H, Chiranand W, Lazzell AL, Zhao Q, Vega LA, Lopez-Ribot JL, Gardner PR, Gustin MC. 2004. Inducible defense mechanism against nitric oxide in Candida albicans. Eukaryot Cell. 3:715–723. doi:10.1128/EC.3.3.715-723.2004
  • Villa F, Remelli W, Forlani F, Gambino M, Landini P, Cappitelli F. 2012. Effects of chronic sub-lethal oxidative stress on biofilm formation by Azotobacter vinelandii. Biofouling. 28:823–833. doi:10.1080/08927014.2012.715285
  • Wen ZT, Suntharaligham P, Cvitkovitch DG, Burne RA. 2005. Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect Immun. 73:219–225. doi:10.1128/IAI.73.1.219-225.2005
  • Xie Z, Thompson A, Sobue T, Kashleva H, Xu H, Vasilakos J, Dongari-Bagtzoglou A. 2012. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing. J Infect Dis. 206:1936–1945. doi:10.1093/infdis/jis607
  • Zhang XS, García-Contreras R, Wood TK. 2007. YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol. 189:3051–3062. doi:10.1128/JB.01832-06

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.