Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 32, 2016 - Issue 10
697
Views
21
CrossRef citations to date
0
Altmetric
Articles

Impact of the surface roughness of AISI 316L stainless steel on biofilm adhesion in a seawater-cooled tubular heat exchanger-condenser

, , &
Pages 1185-1193 | Received 30 Jun 2016, Accepted 20 Sep 2016, Published online: 17 Oct 2016

References

  • ASME/ANSI B46.1. 2009. Surface texture (Surface roughness, waviness, and lay). New York, (NY): The American Society of Mechanical Engineers.
  • Barton AF, Wallis MR, Sargison JE, Buia A, Walker GJ. 2008. Hydraulic roughness of biofouled pipes, biofilm character, and measured improvements from cleaning. J Hydraul Eng. 134:852–857. doi: 10.1061/(ASCE)0733-9429(2008)134:6(852)
  • Bornhorst A, Muller-Steinhagen H, Zhao Q. 1999. Reduction formation under pool boiling conditions by ion implantation and magnetron sputtering on heat transfer surfaces. Heat Transfer Eng. 20:6–14. doi: 10.1080/014576399271529
  • Boudjellaba D, Dron J, Revenko G, Démelas C, Boudenne JL. 2016. Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents. Sci Total Environ. 541:391-399. doi: 10.1016/j.scitotenv.2015.09.046
  • Characklis WG, Turakhia MH, Zelver N. 1990. Transport and interfacial transfer phenomena. In: Characklis WG, Marshall KC, editors. Biofilms. New York (NY): Wiley Series in Ecological and Applied Microbiology; p. 265–340.
  • Chen MJ, Zhang Z, Bott TR. 2005. Effects of operating conditions on the adhesive strength of Pseudomonas fluorescens biofilms in tubes. Colloid Surface B. 43:61–71. doi: 10.1016/j.colsurfb.2005.04.004
  • Cho YI, Choi BG. 1999. Validation of an electronic antifouling technology in a single tube heat exchanger. Int J Heat Mass Transfer. 42:1491–1499. doi: 10.1016/S0017-9310(98)00196-3
  • Cloete TE, Westaard D, Van Vuuren SJ. 2003. Dynamic response of biofilm to pipe surface and fluid velocity. Water Sci Technol. 47:57–59.
  • Cowle MW, Babatunde AO, Rauen WB, Bockelmann-Evans BN, Barton AF. 2014. Biofilm development in water distribution and drainage systems: dynamics and implications for hydraulic efficiency. Environ Technol. 3:31–47. doi: 10.1080/09593330.2014.923517
  • Cristiani P, Perboni G. 2014. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry. 97:120–126. doi: 10.1016/j.bioelechem.2014.01.002
  • Ditsche P, Wainwright DK, Summers AP. 2014. Attachment to challenging substrates – fouling, roughness and limits of adhesion in the northern clingfish. J Exp Biol. 217:2548–2554. doi: 10.1242/jeb.100149
  • Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis. 8:881–890. doi: 10.3201/eid0809.020063
  • Eguía E, Trueba A. 2007. Application of marine biotechnology in the production of natural biocides for testing on environmentally innocuous antifouling coatings. J Coat Technol Res. 4:191–202. doi: 10.1007/s11998-007-9022-3
  • Eguía E, Trueba A, Girón MA, Río-Calonge B, Otero FM, Bielva C. 2007. Optimisation of biocide dose as a function of residual biocide in a heat exchanger pilot plant effluent. Biofouling. 23:231–247. doi: 10.1080/08927010701306740
  • Eguía E, Trueba A, Río-Calonge B, Girón MA, Amieva JJ, Bielva C. 2008. Combined monitor for direct and indirect measurement of biofouling. Biofouling. 24:75–86. doi: 10.1080/08927010701817241
  • Eguía E, Trueba A, Río-Calonge B, Girón MA, Bielva C. 2008. Biofilm control in tubular heat exchangers refrigerated by seawater using flow inversion physical treatment. Int Biodeterior Biodegrad. 62:79–87. doi: 10.1016/j.ibiod.2007.12.004
  • Espeso DR, Carpio A, Einarsson B. 2015. Differential growth of wrinkled biofilms. Phys Rev E. 91:022710–022727. doi: 10.1103/PhysRevE.91.022710
  • Ferreira C, Pereira AM, Pereira MC, Simoes M, Melo LF. 2013. Biofilm control with new microparticles with immobilized biocide. Heat Transfer Eng. 34:712–718. doi: 10.1080/01457632.2012.739040
  • Frota MN, Ticona EM, Neves AV, Marques RP, Braga SL, Valente G. 2014. On-line cleaning technique for mitigation of biofouling in heat exchangers: a case study of a hydroelectric power plant in Brazil. Exp Therm Fluid Sci. 53:197–206. doi: 10.1016/j.expthermflusci.2013.12.006
  • Geddert T, Augustin W, Scholl S. 2011. Induction time in crystallization fouling on heat transfer surfaces. Chem Eng Technol. 34:1303–1310. doi: 10.1002/ceat.201000469
  • Gjaltema A, Arts PAM, Van Loosdrecht MCM, Kuenen JG, Heijnen JJ. 1994. Heterogeneity of biofilms in rotating annular reactors: occurrence, structure, and consequences. Biotechnol Bioeng. 44:194–204. doi: 10.1002/bit.260440208
  • Kukulka DJ, Devgun M. 2007. Fouling surface finish evaluation. Appl Therm Eng. 27:1165–1172. doi: 10.1016/j.applthermaleng.2006.02.041
  • Liang-Chen W, Su-Fang L, Liang-Bi W, Kai C, Qiao-Ling Z, Hong-Bin L, Gang L. 2016. Relationships between the characteristics of CaCO3 fouling and the flow velocity in smooth tube. Exp Therm Fluid Sci. 74:143–159. doi: 10.1016/j.expthermflusci.2015.12.001
  • Liu C, Zhao Q. 2011. The CQ ratio of surface energy components influences adhesion and removal of fouling bacteria. Biofouling. 27:275–285. doi: 10.1080/08927014.2011.563842
  • Liu Y, Zou Y, Zhao L, Liu W, Cheng L. 2011. Investigation of adhesion of CaCO3 crystalline fouling on stainless steel surfaces with different roughness. Int Commun Heat Mass Transfer. 38:730–733. doi: 10.1016/j.icheatmasstransfer.2011.04.003
  • Mavridou SG, Konstandinidis E, Bouris DG. 2015. Experimental evaluation of pairs of inline tubes of different size as components for heat exchanger tube bundles. Int J Heat Mass Transfer. 90:280–290. doi: 10.1016/j.ijheatmasstransfer.2015.06.047
  • Percival SL, Knapp JS, Wales DS, Edyvean RGJ. 1999. The effect of turbulent flow and surface roughness on biofilm formation in drinking water. J Ind Microbiol Biotechnol. 22:152–159. doi: 10.1038/sj.jim.2900622
  • Perkins SCT, Henderson AD, Walker JM, Li XL. 2012. The influence of bacteria based biofouling on the wall friction and velocity distribution of hydropower pipes. Aust J Mech Eng. 12:77–88. doi: 10.7158/M12-087.2014.12.1
  • Renner LD, Weibel DB. 2011. Physicochemical regulation of biofilm formation. MRS Bull. 36:347-355. doi: 10.1557/mrs.2011.65
  • Rubio D, Casanueva JF, Nebot E. 2015. Assessment of the antifouling effect of five different treatment strategies on a seawater cooling system. Appl Therm Eng. 85:124-134. doi: 10.1016/j.applthermaleng.2015.03.080
  • Santos O, Nylander T, Rosmaninho Rizzo RG, Yiantsios S, Andritsos N, Karabelas A, Muller-Steinhagen H, Melo L, Boulange-Petermann L, Gabet C, et al. 2004. Modified stainless steel surfaces targeted to reduce fouling – surface characterization. J Food Eng. 64:63–79. doi: 10.1016/j.jfoodeng.2003.09.013
  • Schultz MP, Swain GW. 1999. The effect of biofilms on turbulent boundary layers. J Fluids Eng. 121:733–746. doi: 10.1115/1.2822009
  • Sharqawy MH, Lienhard JH, Zubair SM. 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin Water Treat. 16:354–380. doi: 10.5004/dwt.2010.1079
  • Singh AV, Vyas V, Patil R, Sharma V, Scopelliti PE. 2011. Quantitative characterization of the influence of the nanoscale morphology of nanostructured surfaces on bacterial adhesion and biofilm formation. PLOS One. 6:e25029. doi: 10.1371/journal.pone.0025029
  • Spritzler J, DeGruttola VG, Pei L. 2008. Two-sample tests of area-under-the-curve in the presence of missing data. Int J Biostat. 4:1557–4679. doi: 10.2202/1557-4679.1068
  • Trueba A, García S, Otero FM. 2014. Mitigation of biofouling using electromagnetic fields in tubular heat exchangers-condensers cooled by seawater. Biofouling. 30:95–103. doi: 10.1080/08927014.2013.847926
  • Trueba A, García S, Otero FM, Vega LM, Madariaga E. 2015a. The effect of electromagnetic fields on biofouling in a heat exchange system using seawater. Biofouling. 31:19–26. doi: 10.1080/08927014.2015.1070404
  • Trueba A, García S, Otero FM, Vega LM, Madariaga E. 2015b. Influence of flow velocity on biofilm growth in a tubular heat exchanger-condenser cooled by seawater. Biofouling. 31:527–534. doi: 10.1080/08927014.2015.1070404
  • Trueba A, Otero FM, González JA, Vega LM, García S. 2013. Study of the activity of quaternary ammonium compounds in the mitigation of biofouling in heat exchangers–condensers cooled by seawater. Biofouling. 29:1139–1151. doi: 10.1080/08927014.2013.830108
  • Trueba A, Vega LM, García S, Otero FM, Madariaga E. 2016. Mitigation of marine biofouling on tubes of open rack vaporizers using electromagnetic fields. Water Sci Technol. 73:1221–1229. doi: 10.2166/wst.2015.597
  • Yu J, Kim D, Lee T. 2010. Microbial diversity in biofilms on water distribution pipes of different materials. Water Sci Technol. 61:163–171. doi: 10.2166/wst.2010.813
  • Zettler HU, Weiss M, Zhao Q, Muller-Steinhagen H. 2005. Influence of surface properties and characteristics on fouling in plate heat exchangers. Heat Transfer Eng. 26:3–17. doi: 10.1080/01457630590897024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.