Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 33, 2017 - Issue 4
1,044
Views
19
CrossRef citations to date
0
Altmetric
Articles

New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review

, , , , , & show all
Pages 306-326 | Received 28 Nov 2016, Accepted 04 Mar 2017, Published online: 28 Mar 2017

References

  • Aldea M, Hernández-Chico C, de la Campa AG, Kushner SR, Vicente M. 1988. Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J Bacteriol. 170:5169–5176.10.1128/jb.170.11.5169-5176.1988
  • Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, Sauer K. 2006. Phenotypic characterization of Streptococcus pneumoniae biofilm development. J Bacteriol. 188:2325–2335.
  • Allison DG. 2010. The biofilm matrix. Biofouling. 19:139–150.
  • Allocati N, Masulli M, Di Ilio C, De Laurenzi V. 2015. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 6:e1609. doi:10.1038/cddis.2014.570.
  • Banse AV, Chastanet A, Rahn-Lee L, Hobbs EC, Losick R. 2008. Parallel pathways of repression and antirepression governing the transition to stationary phase in Bacillus subtilis. Proc Natl Acad Sci USA. 105:15547–15552.
  • Baraquet C, Murakami K, Parsek MR, Harwood CS. 2012. The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res. 40:7207–7281.
  • Baraquet C, Harwood CS. 2013. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci USA. 110:18478–18483.
  • Baraquet C, Harwood CS. 2015. FleQ DNA binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in Pseudomonas aeruginosa. J Bacteriol. 198:178–186.
  • Baraquet C, Harwood CS. 2016. FleQ DNA binding consensus sequence revealed by studies of FleQ-dependent regulation of biofilm gene expression in Pseudomonas aeruginosa. J Bacteriol. 198:1178–1186.
  • Barken KB, Pamp SJ, Tolker-Nielsen T. 2008. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms. Environ Microbiol. 10:2331–2343.
  • Barrios AFG, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. 2006. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol. 188:305–316.
  • Bassis CM, Visick KL. 2010. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J Bacteriol. 192:1269–1278.
  • Besharova O, Suchanek VM, Hartmann R, Drescher K, Sourjik V. 2016. Diversification of gene expression during formation of static submerged biofilms by Escherichia coli. Front Microbiol. 7:1568. doi:10.3389/fmicb.2016.01568.
  • Bian J, Liu X, Cheng Y-Q, Li C. 2013. Inactivation of cyclic di-GMP binding protein TDE0214 affects the motility, biofilm formation, and virulence of Treponema denticola. J Bacteriol. 195:3897–3905.
  • Bordi C, De Bentzmann S. 2011. Hacking into bacterial biofilms: a new therapeutic challenge. Ann Intensive Care. 1:19. doi:10.1186/2110-5820-1-19.
  • Bordi C, Lamy MC, Ventre I, Termine E, Hachani A, Fillet S, Roche B, Bleves S, Méjean V, Lazdunski A, Filloux A. 2010. Regulatory RNAs and the HptB/RetS signaling pathways fine-tune Pseudomonas aeruginosa pathogenesis. Mol Microbiol. 76:1427–1443.
  • Branda SS, Chu F, Kearns DB, Losick R, Kolter RA. 2006. Major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol. 59:1229–1238.
  • Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R. 2001. Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA. 98:11621–11626.
  • Brencic A, Lory S. 2009. Determination of the regulon and identification of novel mRNA targets of Pseudomonas aeruginosa RsmA. Mol Microbiol. 72:612–632.
  • Brencic A, McFarland KA, McManus HR, Castang S, Mogno I, Dove SL, Lory S. 2009. The GacS/GacA signal transduction system of Pseudomonas aeruginosa acts exclusively through its control over the transcription of the RsmY and RsmZ regulatory small RNAs. Mol Microbiol. 73:434–445.
  • Carthew RW, Sontheimer EJ. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell. 136:642–655.10.1016/j.cell.2009.01.035
  • Castang S, McManus HR, Turner KH, Dove SL. 2008. H-NS family members function coordinately in an opportunistic pathogen. Proc Natl Acad Sci USA. 105:18947–18952.
  • Chai Y, Kolter R, Losick R. 2009. Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis. Mol Microbiol. 74:876–887.
  • Chai Y, Norman T, Kolter R, Losick R. 2010. An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev. 24:754–765.
  • Chambonnier G, Roux L, Redelberger D, Fadel F, Filloux A, Sivaneson M, de Bentzmann S, Bordi C. 2016. The hybrid histidine kinase LadS forms a multicomponent signal transduction system with the GacS/GacA two-component system in Pseudomonas aeruginosa. PLoS Genet. 12:e1006032. doi:10.1371/journal.pgen.1006032.
  • Chen R, Guttenplan SB, Blair KM, Kearns DB. 2009. Role of the σD-dependent autolysins in Bacillus subtilis population heterogeneity. J Bacteriol. 191:5775–5784.
  • Cheng X, Zheng X, Zhou X, Zeng J, Ren Z, Xu X, Cheng L, Li M, Li J, Li Y. 2016. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans. Environ Microbiol. 18:904–922.
  • Christiaen SE, Matthijs N, Zhang X-H, Nelis HJ, Bossier P, Coenye T. 2014. Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1. Pathog Dis. 70:271–279.
  • Conrad JC, Gibiansky ML, Jin F, Gordon VD, Motto DA, Mathewson MA, Stopka WG, Zelasko DC, Shrout JD, Wong GC. 2011. Flagella and pili-mediated near-surface single-cell motility mechanisms in P. aeruginosa. Biophys J. 100:1608–1616.
  • Corrigan RM, Gründling A. 2013. Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol. 11:513–524.
  • Das T, Manefield M. 2012. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE. 7:e46718. doi:10.1371/journal.pone.0046718.
  • Das T, Sehar S, Manefield M. 2013. The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development. Environ Microbiol Rep. 5:778–786.
  • Dasgupta N, Ramphal R. 2001. Interaction of the antiactivator FleN with the transcriptional activator FleQ regulates flagellar number in Pseudomonas aeruginosa. J Bacteriol. 183:6636–6644.
  • Davey ME, O’Toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64:847–867.
  • De Loughery A, Dengler V, Chai Y, Losick R. 2016. Biofilm formation by Bacillus subtilis requires an endoribonuclease-containing multisubunit complex that controls mRNA levels for the matrix gene repressor SinR. Mol Microbiol. 99:425–437.
  • Diethmaier C, Pietack N, Gunka K, Wrede C, Lehnik-Habrink M, Herzberg C, Hübner S, Stülke J. 2011. A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation. J Bacteriol. 193:5997–6007.
  • Dobretsov S, Teplitski M, Paul V. 2009. Mini-review: quorum sensing in the marine environment and its relationship to biofouling. Biofouling. 25:413–427.
  • Donlan RM, Costerton JW. 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 15:167–193.
  • Dressaire C, Moreira RN, Barahona S, Alves de Matos AP, Arraiano CM. 2015. BolA is a transcriptional switch that turns off motility and turns on biofilm development. mBio. 6:e02352-14. doi:10.1128/mBio.02352-14.
  • Dubnau EJ, Carabetta VJ, Tanner AW, Miras M, Diethmaier C, Dubnau D. 2016. A protein complex supports the production of Spo0A-P and plays additional roles for biofilms and the K-state in Bacillus subtilis. Mol Biol. 101:606–624.
  • Dunny GM, Leonard BA. 1997. Cell–cell communication in Gram-positive bacteria. Rev Microbiol. 51:527–564.
  • Eiamphungporn W, Helmann JD. 2008. The Bacillus subtilis sigma (M) regulon and its contribution to cell envelope stress responses. Mol Microbiol. 67:830–848.
  • Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A, Galperin MY, Römling U, Gomelsky M. 2014. GIL, a new c-di-GMP binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol Microbiol. 93:439–452.
  • Fazli M, O’Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, Ryan RP, Tolker-Nielsen T. 2011. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol Microbiol. 82:327–341.
  • Ferreira RBR, Antunes LCM, Greenberg EP, McCarter LL. 2008. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J Bacteriol. 190:851–860.
  • Flemming H-C, Neu TR, Wozniak DJ. 2007. The EPS matrix: The “house of biofilm cells”. J Bacteriol. 22:7945–7947.
  • Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8:623–633.
  • Flint SH, Bremer PJ, Brooks JD. 1997. Biofilms in dairy manufacturing plant description, current concerns and methods of control. Biofouling. 11:81–97.
  • Gaupp R, Schlag S, Liebeke M, Lalk M, Götz F. 2010. Advantage of upregulation of succinate dehydrogenase in Staphylococcus aureus biofilms. J Bacteriol. 192:2385–2394.
  • Golberg K, Pavlov V, Marks RS, Kushmaro A. 2013. Coral-associated bacteria, quorum sensing disrupters, and the regulation of biofouling. Biofouling. 29:669–682.
  • Goodman AL, Merighi M, Hyodo M, Ventre I, Filloux A, Lory S. 2009. Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev. 23:249–259.
  • Guilhen C, Charbonnel N, Parisot N, Gueguen N, Iltis A, Forestier C, Balestrino D. 2016. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. BMC Genomics. 17:1318. doi:10.1186/s12864-016-2557-x.
  • Gundlach J, Rath H, Herzberg C, Mäder U, Stülke J. 2016. Second messenger signaling in Bacillus subtilis: accumulation of cyclic di-AMP inhibits biofilm formation. Front Microbiol. 7:804. doi:10.3389/fmicb.2016.00804.
  • Ha D-G, O’Toole GA. 2015. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol Spectr. 3: MB-0003-2014. doi:10.1128/microbiolspec.MB-0003-2014
  • Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2:95–108.
  • Hall-Stoodley L, Stoodley P. 2009. Evolving concepts in biofilm infections. Cell Microbiol. 11:1034–1043.
  • Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA. 2006. Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol. 52:847–860.
  • Hazan R, Sat B, Engelberg-Kulka H. 2004. Escherichia coli mazEF-mediated cell death is triggered by various stressful conditions. J Bacteriol. 186:3663–3669.
  • Hengge R. 2009. Principles of c-di-GMP signaling in bacteria. Nat Rev Microbiol. 7:263–273.
  • Hengge R, Galperin MY, Ghigo JM, Gomelsky M, Greene J, Hughes KT, Jenal U, Landini P. 2015. Systematic nomenclature for GGDEF and EAL domain-containing cyclic di-GMP turnover proteins of Escherichia coli. J Bacteriol. 198:7–11.
  • Henke J, Bassler BL. 2004. Bacterial social engagements. Trends Cell Biol. 14:648–656.
  • Henrici AT. 1933. Studies of freshwater bacteria. I. A direct microscopic technique. J Bacteriol. 25:277–287.
  • Heurlier K, Williams F, Heeb S, Dormond C, Pessi G, Singer D, Cámara M, Williams P, Haas D. 2004. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol. 186:2936–2945.
  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 146:2395–2407.
  • Hickman JW, Harwood CS. 2008. Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol. 69:376–389.
  • Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, MacPhee CE, van Aalten DMF, Stanley-Wall NR. 2013. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA. 110:13600–13605.
  • Huang J, Shi Y, Zeng G, Gu Y, Chen G, Shi L, Hu Y, Tang B, Zhou J. 2016. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: an overview. Chemosphere. 157:137–151.
  • Huynh TN, Luo S, Pensinger D, Sauer JD, Tong L, Woodward JJ. 2015. An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proc Natl Acad Sci USA. 112:E747–E756.
  • Irie Y, Starkey M, Edwards AN, Wozniak DJ, Romeo T, Parsek MR. 2010. Pseudomonas aeruginosa biofilm matrix polysaccharide Psl is regulated transcriptionally by RpoS and post-transcriptionally by RsmA. Mol Microbiol. 78:158–172.
  • Jarrell KF, McBride MJ. 2008. The surprisingly diverse ways that bacteria move. Nat Rev Microbiol. 6:466–476.
  • Jefferson KK. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol Lett. 236:163–173.
  • Jenal U, Malone J. 2006. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet. 40:385–407.
  • Jiang M, Shao W, Perego M, Hoch JA. 2000. Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol. 38:535–542.
  • Jiménez-Fernández A, López-Sánchez A, Jiménez-Díaz L, Navarrete B, Calero P, Platero AI, Govantes F. 2016. Complex interplay between FleQ, cyclic diguanylate and multiple σ factors coordinately regulates flagellar motility and biofilm development in Pseudomonas putida. PLOS ONE. 11:e0163142. doi:10.1371/journal.pone.0163142.
  • Jyot J, Dasgupta N, Ramphal R. 2002. FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol. 184:5251–5260.
  • Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. 2013. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev. 42:305–341.
  • Kay E, Humair B, Denervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D. 2006. Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J Bacteriol. 188:6026–6033.
  • Kearns DB, Chu F, Branda SS, Kolter R, Losick R. 2005. A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol. 55:739–749.
  • Kim S, Lee S, Hong S, Oh Y, Seoul M, Kweon J, Kim T. 2009. Biofouling of reverse osmosis membranes: microbial quorum sensing and fouling propensity. Desalination. 247:303–315.
  • Kim Y, Wang X, Ma Q, Zhang XS, Wood TK. 2009. Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol. 191:1258–1267.10.1128/JB.01465-08
  • Kobayashi K. 2008. SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis. Mol Microbiol. 69:1399–1410.10.1111/mmi.2008.69.issue-6
  • Koch B, Nybroe O. 2006. Initial characterization of a bolA homologue from Pseudomonas fluorescens indicates different roles for BolA-like proteins in P. fluorescens and Escherichia coli. FEMS Microbiol Lett. 262:48–56.10.1111/fml.2006.262.issue-1
  • Kolodkin-Gal I, Verdiger R, Shlosberg-Fedida A, Engelberg-Kulka H. 2009. A differential effect of E. coli toxin-antitoxin systems on cell death in liquid media and biofilm formation. PLoS ONE. 4:e6785. doi:10.1371/journal.pone.0006785.
  • Kolter R, Greenberg EP. 2006. The superficial life of microbes. Nature. 441:300–302.10.1038/441300a
  • Kong W, Zhao J, Kang H, Zhu M, Zhou T, Deng X, Liang H. 2015. ChIP-seq reveals the global regulator AlgR mediating cyclic di-GMP synthesis in Pseudomonas aeruginosa. Nucleic Acids Res. 43:8268–8282.10.1093/nar/gkv747
  • Kovacs AT, Kuipers OP. 2011. Rok regulates yuaB expression during architecturally complex colony development of Bacillus subtilis 168. J Bacteriol. 193:998–1002.10.1128/JB.01170-10
  • Kragh KN, Hutchison JB, Melaugh G, Rodesney C, Roberts AEL, Irie Y, Jensen PØ, Diggle SP, Allen RJ, Gordon V, Bjarnsholt T. 2016. Role of multicellular aggregates in biofilm formation. mBio. 7:e00237-16. doi:10.1128/mBio.00237-16.
  • Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science. 327:866–868.10.1126/science.1181185
  • Kuchma SL, Delalez NJ, Filkins LM, Snavely EA, Armitage JP, O’Toole GA. 2015. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB Stator. J Bacteriol. 197:420–430.10.1128/JB.02130-14
  • Lee VT. 2016. Discovering protein receptors for signaling nucleotides. PLoS Pathog. 12:e1005569. doi:10.1371/journal.ppat.1005569.
  • Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S. 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol Microbiol. 65:1474–1484.10.1111/mmi.2007.65.issue-6
  • Lei Y, Oshima T, Ogasawara N, Ishikawa S. 2013. Functional analysis of the Protein Veg, which stimulates biofilm formation in Bacillus subtilis. J Bacteriol. 195:1697–1705.10.1128/JB.02201-12
  • Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R. 2008. Biofilm development with an Emphasis on Bacillus subtilis. Curr Top Microbiol Immunol. 322:1–16.
  • Leplae R, Geeraerts D, Hallez R, Guglielmini J, Drèze P, Van Melderen L. 2011. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families. Nucleic Acid Res. 39:5513–5525.10.1093/nar/gkr131
  • Lewis RJ, Brannigan JA, Smith I, Wilkinson AJ. 1996. Crystallisation of the Bacillus subtilis sporulation inhibitor SinR, complexed with its antagonist. FEBS Lett. 378:98–100.10.1016/0014-5793(95)01432-2
  • Li Y-H, Tian X. 2012. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel). 12:2519–2538.10.3390/s120302519
  • Li G, Shen M, Lu S, Le S, Tan Y, Wang J, Zhao X, Shen W, Guo K, Yang Y, et al. 2016. Identification and characterization of the HicAB toxin-antitoxin system in the opportunistic pathogen Pseudomonas aeruginosa. Toxins (Basel). 8:113. doi:10.3390/toxins8040113.
  • Liang Y, Gao Z, Wang F, Zhang Y, Dong Y, Liu Q. 2014. Structural and functional characterization of Escherichia coli toxin-antitoxin complex DinJ-YafQ. J Biol Chem. 289:21191–21202.10.1074/jbc.M114.559773
  • Liu X, Matsumura P. 1996. Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Mol Microbiol. 21:613–620.10.1111/mmi.1996.21.issue-3
  • Lundberg ME, Becker EC, Choe S. 2013. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis. PLoS ONE. 8:e60993. doi:10.1371/journal.pone.0060993.
  • Luo Y, Helmann JD. 2009. Extracytoplasmic function σ factors with overlapping promoter specificity regulate sublancin production in Bacillus subtilis. J Bacteriol. 191:4951–4958.10.1128/JB.00549-09
  • Lyon P. 2015. The cognitive cell: bacterial behavior reconsidered. Front Microbiol. 6:264. doi:10.3389/fmicb.2015.00264.
  • Ma Q, Yang Z, Pu M, Peti W, Wood TK. 2011. Engineering a novel c-di-GMP-binding protein for biofilm dispersal. Environ Microbiol. 13:631–642.10.1111/emi.2011.13.issue-3
  • Macnab RM. 1992. Genetics and biogenesis of bacterial flagella. Annu Rev Genet. 26:131–158.10.1146/annurev.ge.26.120192.001023
  • Marlow VL, Porter M, Hobley L, Kiley TB, Swedlow JR, Davidson FA, Stanley-Wall NR. 2014. Phosphorylated DegU manipulates cell fate differentiation in the Bacillus subtilis biofilm. J Bacteriol. 196:16–27.10.1128/JB.00930-13
  • Martínez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, González de Heredia E, Baena I, Martín-Martín I, Rivilla R, Martín M. 2014. Identification of flgZ as a flagellar gene encoding a PilZ domain protein that regulates swimming motility and biofilm formation in Pseudomonas. PLoS ONE. 9:e87608. doi:10.1371/journal.pone.0087608.
  • Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MV. 2016. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 113:E209–E218. doi:10.1073/pnas.1523148113.
  • McDougald D, Rice SA, Barraud N, Steinberg PD, Kjelleberg S. 2011. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat Rev Microbiol. 10:39–50.
  • Merfa MV, Niza B, Takita MA, De Souza AA. 2016. The MqsRA toxin-antitoxin system from Xylella fastidiosa plays a key role in bacterial fitness, pathogenicity, and persister cell formation. Front Microbiol. 7:904. doi:10.3389/fmicb.2016.00904.
  • Miller MB, Bassler BL. 2001. Quorum sensing in bacteria. Annu Rev Microbiol. 55:165–199.10.1146/annurev.micro.55.1.165
  • Moscoso JA, Jaeger T, Valentini M, Hui K, Jenal U, Filloux A. 2014. The diguanylate cyclase SadC is a central player in Gac/Rsm-mediated biofilm formation in Pseudomonas aeruginosa. J Bacteriol. 196:4081–4088.10.1128/JB.01850-14
  • Murray TS, Ledizet M, Kazmierczak BI. 2010. Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol. 59:511–520.10.1099/jmm.0.017715-0
  • Newell PD, Monds RD, O’Toole GA. 2008. LapD is a bis-(3′,5′)-cyclic dimeric GMP-binding protein that regulates surface attachment by Pseudomonas fluorescens Pf0–1. Proc Natl Acad Sci USA. 106:3461–3466.
  • O’Toole G, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu Rev Microbiol. 54:49–79.10.1146/annurev.micro.54.1.49
  • O’Toole GA, Kolter R. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol. 30:295–304.10.1046/j.1365-2958.1998.01062.x
  • Ogura M, Yoshikawa H, Chibazakura T. 2014. Regulation of the response regulator gene degU through the binding of SinR/SlrR and exclusion of SinR/SlrR by DegU in Bacillus subtilis. J Bacteriol. 196:873–881.10.1128/JB.01321-13
  • Okshevsky M, Meyer RL. 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol. 41:341–352.10.3109/1040841X.2013.841639
  • Ono K, Oka R, Toyofuku M, Sakaguchi A, Hamada M, Yoshida S, Nomura N. 2014. cAMP signaling affects irreversible attachment during biofilm formation by Pseudomonas aeruginosa PAO1. Microbes Environ. 29:104–106.10.1264/jsme2.ME13151
  • Papenfort K, Bassler BL. 2016. Quorum sensing signal–response systems in Gram-negative bacteria. Nature Rev Microbiol. 14:576–588.10.1038/nrmicro.2016.89
  • Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. 2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol Cell. 38:128–139.10.1016/j.molcel.2010.03.001
  • Paul R, Weiser S, Amiot NC, Chan C, Schirmer T, Giese B, Jenal U. 2004. Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev. 18:715–727.10.1101/gad.289504
  • Pécastaings S, Allombert J, Lajoie B, Doublet P, Roques C, Vianney A. 2016. New insights into Legionella pneumophila biofilm regulation by c-di-GMP signaling. Biofouling. 32:935–948.10.1080/08927014.2016.1212988
  • Peng X, Zhang Y, Bai G, Zhou X, Wu H. 2016. Cyclic di-AMP mediates biofilm formation. Mol Microbiol. 99:945–959.10.1111/mmi.2016.99.issue-5
  • Petrova OE, Sauer K. 2010. The novel two-component regulatory system BfiSR regulates biofilm development by controlling the small RNA rsmZ through CafA. J Bacteriol. 192:5275–5288.10.1128/JB.00387-10
  • Petrova OE, Sauer K. 2011. SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation. J Bacteriol. 193:6614–6628.10.1128/JB.00305-11
  • Porter SL, Wadhams GH, Armitage JP. 2011. Signal processing in complex chemotaxis pathways. Nat Rev Microbiol. 9:153–165.10.1038/nrmicro2505
  • Ramírez-Mata A, López-Lara LI, Xiqui-Vázquez ML, Jijón-Moreno S, Romero-Osorio A, Baca BE. 2016. The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense. Res Microbiol. 167:190–201.10.1016/j.resmic.2015.12.004
  • Ren D, Bedzyk LA, Thomas SM, Ye RW, Wood TK. 2004. Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol. 64:515–524.10.1007/s00253-003-1517-y
  • Rice KC, Mann EE, Endres JL, Weiss EC, Cassat JE, Smeltzer MS, Bayles KW. 2007. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci USA. 104:8113–8118.10.1073/pnas.0610226104
  • Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW, Goodson JR, Galperin MY, Yildiz FH, Lee VT. 2015. Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with Type II secretion systems. PLoS Pathog. 11:e1005232. doi:10.1371/journal.ppat.1005232.
  • Römling U, Gomelsky M, Galperin MY. 2005. C-di-GMP: the dawning of a novel bacterial signaling system. Mol Microbiol. 57:629–639.10.1111/mmi.2005.57.issue-3
  • Ryan RP, Fouhy Y, Lucey JF, Crossman LC, Spiro S, He YW, Zhang LH, Heeb S, Cámara M, Williams P, Dow JM. 2006. Cell–cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci USA. 103:6702–6717.
  • Ryan RP, Fouhy Y, Lucey JF, Dow JM. 2006. Cyclic Di-GMP signaling in bacteria: recent advances and new puzzles. J Bacteriol. 188:8327–8334.10.1128/JB.01079-06
  • Ryjenkov DA, Simm R, Römling U, Gomelsky M. 2006. The PilZ domain is a receptor for the second messenger c-di-GMP. The PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem. 281:30310–30314.10.1074/jbc.C600179200
  • Sala A, Bordes P, Genevaux P. 2014. Multiple toxin–antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel). 6:1002–1020.10.3390/toxins6031002
  • Santos JM, Freire P, Vicente M, Arraiano C. 1999. The stationary-phase morphogene bolA from Escherichia coli is induced by stress during early stages of growth. Mol Microbiol. 32:789–798.10.1046/j.1365-2958.1999.01397.x
  • Schirmer T, Jenal U. 2009. Structural and mechanistic determinants of c-di-GMP signaling. Nat Rev Microbiol. 7:724–735.10.1038/nrmicro2203
  • Senadheera D, Cvitkovitch DG. 2008. Quorum sensing and biofilm formation by Streptococcus mutans. Adv Exp Med Biol. 631:178–188.10.1007/978-0-387-78885-2
  • Shapiro JA. 1998. Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol. 52:81–104.10.1146/annurev.micro.52.1.81
  • Sifri CD. 2008. Quorum sensing: bacteria talk sense. Clin Infect Dis. 47:1070–1076.10.1086/593299
  • Simm R, Morr M, Kader A, Nimtz M, Römling U. 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol. 53:1123–1134.10.1111/j.1365-2958.2004.04206.x
  • Soo VWC, Wood TK. 2013. Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD. Sci Rep. 3:3186. doi:10.1038/srep03186.
  • Sourjik V, Wingreen NS. 2011. Responding to chemical gradients: bacterial chemotaxis. Curr Opin Cell Biol. 24:1–7.
  • Srivastava D, Hsieh M-L, Khataokar A, Neiditch MB, Waters CM. 2013. Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol Microbiol. 90:1262–1276.10.1111/mmi.2013.90.issue-6
  • Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol. 56:187–209.10.1146/annurev.micro.56.012302.160705
  • Tan Q, Awano N, Inouye M. 2011. YeeV is an Escherichia coli toxin that inhibits cell division by targeting the cytoskeleton proteins. Mol Microbiol. 79:109–118.10.1111/j.1365-2958.2010.07433.x
  • Tan JW, Wilksch JJ, Hocking DM, Wang N, Srikhanta YN, Tauschek M, Lithgow T, Robins-Browne RM, Yang J, Strugnell RA. 2015. Positive autoregulation of mrkHI by the cyclic di-GMP-dependent MrkH protein in the biofilm regulatory circuit of Klebsiella pneumoniae. J Bacteriol. 197:1659–1667.10.1128/JB.02615-14
  • Tolker-Nielson T, Brinch UC, Ragas PC, Andersen JB, Jacobsen CS, Molin S. 2000. Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol. 182:6482–6489.10.1128/JB.182.22.6482-6489.2000
  • Ulrich LE, Koonin EV, Zhulin IB. 2005. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 13:52–56.10.1016/j.tim.2004.12.006
  • Unterholzner SJ, Poppenberger B, Rozhon W. 2013. Toxin–antitoxin systems; biology, identification, and application. Mob Genet Elements. 3:e26219. doi:10.4161/mge.26219.
  • Valentini M, Filloux A. 2016. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 291:12547–12555.10.1074/jbc.R115.711507
  • Valentini M, Laventie B-J, Moscoso J, Jenal U, Filloux A. 2016. The diguanylate cyclase HsbD intersects with the HptB regulatory cascade to control Pseudomonas aeruginosa biofilm and motility. PLoS Genet. 12:e1006354. doi:10.1371/journal.pgen.1006354.
  • van Gestel J, Vlamakis H, Kolter R 2015. Division of labor in biofilms: the ecology of cell differentiation. Microbiol Spectr. 3: MB-0002-2014. doi: 10.1128/microbiolspec.MB-0002-2014.
  • Van Melderen L, De Bast MS. 2009. Bacterial toxin–antitoxin systems: more than selfish entities? PLoS Genet. 5:e1000437. doi:10.1371/journal.pgen.1000437.
  • Ventre I, Goodman AL, Vallet-Gely I, Vasseur P, Soscia C, Molin S, Bleves S, Lazdunski A, Lory S, Filloux A. 2006. Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc Natl Acad Sci USA. 103:171–176.10.1073/pnas.0507407103
  • Verhamme DT, Kiley TB, Stanley-Wall NR. 2007. DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis. Mol Microbiol. 65:554–568.10.1111/mmi.2007.65.issue-2
  • Vieira HLA, Freire P, Arraiano CM. 2004. Effect of Escherichia coli morphogene bolA on biofilms. Appl Environ Microbiol. 70:5682–5684.10.1128/AEM.70.9.5682-5684.2004
  • Visick KL, Fuqua C. 2005. Decoding microbial chatter: cell–cell communication in bacteria. J Bacteriol. 187:5507–5519.10.1128/JB.187.16.5507-5519.2005
  • Vlamakis H, Aguilar C, Losick R, Kolter R. 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev. 22:945–953.10.1101/gad.1645008
  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R. 2013. Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol. 11:157–168.10.1038/nrmicro2960
  • Wang X, Kim Y, Hong SH, Ma Q, Brown BL, Pu M, Tarone AM, Benedik MJ, Peti W, Page R, Wood TK. 2011. Antitoxin MqsA helps mediate the bacterial general stress response. Nat Chem Biol. 7:359–366.10.1038/nchembio.560
  • Wang C, Ye F, Kumar V, Gao Y-G, Zhang L-H. 2014. BswR controls bacterial motility and biofilm formation in Pseudomonas aeruginosa through modulation of the small RNA rsmZ. Nucleic Acids Res. 42:4563–4576.10.1093/nar/gku106
  • Waters CM, Bassler BL. 2005. Quorum sensing: Cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 21:319–346.10.1146/annurev.cellbio.21.012704.131001
  • Watnick P, Kolter R. 2000. Biofilm, city of microbes. J Bacteriol. 182:2675–2679.10.1128/JB.182.10.2675-2679.2000
  • Wen Y, Behiels E, Devreese B. 2014. Toxin-antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog Dis. 70:240–249.10.1111/fim.2014.70.issue-3
  • Whitten AE, Jacques DA, Hammouda B, Hanley T, King GF, Guss JM, Trewhella J, Langley DB. 2007. The structure of the KinA-Sda complex suggests an allosteric mechanism of histidine kinase inhibition. J Mol Biol. 368:407–420.10.1016/j.jmb.2007.01.064
  • Wilson R, Dowling RB. 1998. Pseudomonas aeruginosa and other related species. Thorax. 53:213–219.10.1136/thx.53.3.213
  • Witte G, Hartung S, Büttner K, Hopfner KP. 2008. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol Cell. 30:167–178.10.1016/j.molcel.2008.02.020
  • Wood TL, Wood TK. 2016. The HigB/HigA toxin/antitoxin system of Pseudomonas aeruginosa influences the virulence factors pyochelin, pyocyanin, and biofilm formation. Microbiologyopen. 5:499–511.10.1002/mbo3.346
  • Woodward J, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science. 328:1703–1705.10.1126/science.1189801
  • Wuster A, Babu MM. 2007. Chemical molecules that regulate transcription and facilitate cell-to-cell communication. Encyclopedia of chemical biology. New York (NY): Wiley. doi: 10.1002/9780470048672.wecb501.
  • Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK. 1993. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun. 61:3811–3817.
  • Yan F, Yu Y, Wang L, Luo Y, Guo J-H, Chai Y. 2016. The comER gene plays an important role in biofilm formation and sporulation in both Bacillus subtilis and Bacillus cereus. Front Microbiol. 7:1025. doi:10.3389/fmicb.2016.01025.
  • Yona-Nadler C, Umanski T, Aizawa S, Friedberg D, Rosenshine I. 2003. Integration host factor (IHF) mediates repression of flagella in enteropathogenic and enterohaemorrhagic Escherichia coli. Microbiology. 149:877–884.10.1099/mic.0.25970-0
  • Zhao J, Wang Q, Li M, Heijstra BD, Wang S, Liang Q, Qi Q. 2013. Escherichia coli toxin gene hipA affects biofilm formation and DNA release. Microbiology. 159:633–640.10.1099/mic.0.063784-0
  • Zhu B, Liu C, Liu S, Cong H, Chen Y, Gu L, Ma LZ. 2016. Membrane association of SadC enhances its diguanylate cyclase activity to control exopolysaccharides synthesis and biofilm formation in Pseudomonas aeruginosa. Environ Microbiol. 18:3440–3452.10.1111/1462-2920.13263
  • Zhu M, Zhao J, Kang H, Kong W, Zhao Y, Wu M, Liang H. 2016. Modulation of Type III secretion system in Pseudomonas aeruginosa: involvement of the PA4857 gene product. Front Microbiol. 7:7. doi:10.3389/fmicb.2016.00007.
  • Zorraquino V, García B, Latasa C, Echeverz M, Toledo-Arana A, Valle J, Lasa I, Solano C. 2013. Coordinated cyclic-Di-GMP repression of Salmonella motility through YcgR and cellulose. J Bacteriol. 195:417–428.10.1128/JB.01789-12

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.