Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 33, 2017 - Issue 10
651
Views
18
CrossRef citations to date
0
Altmetric
Original Articles

KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 807-818 | Received 13 Nov 2016, Accepted 17 Aug 2017, Published online: 12 Oct 2017

References

  • Batoni G, Maisetta G, Brancatisano FL, Esin S, Campa M. 2011. Use of antimicrobial peptides against microbial biofilms: advantages and limits. Curr Med Chem. 18:256–279. doi:10.2174/092986711794088399
  • Bedran TB, Mayer MP, Spolidorio DP, Grenier D. 2014. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts. PLoS ONE. 9:e106766. doi:10.1371/journal.pone.0106766
  • Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol. 3:238–250.
  • Byström A, Sundqvist G. 1981. Bacteriological evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res. 89:321–328.
  • Chávez De Paz LE, Dahlén G, Molander A, Möller A, Bergenholtz G. 2003. Bacteria recovered from teeth with apical periodontitis after antimicrobial endodontic treatment. Int Endod J. 36:500–508. doi:10.1046/j.1365-2591.2003.00686.x
  • Chotjumlong P, Bolscher JG, Nazmi K, Reutrakul V, Supanchart C, Buranaphatthana W, Krisanaprakornkit S. 2013. Involvement of the P2X7 purinergic receptor and c-Jun N-terminal and extracellular signal-regulated kinases in cyclooxygenase-2 and prostaglandin E2 induction by LL-37. J Innate Immun. 5:72–83. doi:10.1159/000342928
  • CLSI - Clinical and Laboratory Standard Institute. 2008. Method for broth dilution antifungal susceptibility testing of yeast; approved standard. 3rd ed. Wayne, PA, CLSI document, M27-A3.
  • CLSI – Clinical and Laboratory Standard Institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 9thed. Wayne, PA, CLSI document, M7-A9.
  • Crusca E, Rezende AA, Marchetto R, Mendes-Giannini MJS, Fontes W, Castro MS, Cilli EM. 2011. Influence of Nterminus modifications on the biological activity, membrane interaction, and secondary structure of the antimicrobial peptide Hylina1. Biopolymers. 96:41–48. doi:10.1002/bip.v96.1
  • Feng X, Sambanthamoorthy K, Palys T, Paranavitana C. 2013. The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides. 49:131–137. doi:10.1016/j.peptides.2013.09.007
  • Giangaspero A, Sandri L, Tossi A. 2001. Amphipathic alpha helical antimicrobial peptides. Eur J Biochem. 268:5589–5600. doi:10.1046/j.1432-1033.2001.02494.x
  • Grönroos L, Mättö J, Saarela M, Luoma AR, Jousimies-Somer H, Pyhälä S, Asikainen S, Alaluusua S. 1995. Chlorhexidine susceptibilities of mutans streptococcal serotypes and ribotypes. Antimicrob Agents Chemother. 39:894–898. doi:10.1128/AAC.39.4.894
  • Hepso HU, Bjornland T, Skoglund LA. 1988. Sid-effects and patient acceptance of 0.2% versus 0.1% chlorhexidine used as post-operative prophylactic mouthwash. Int J Oral Maxillofac Surg. 17:17–20. doi:10.1016/S0901-5027(88)80222-4
  • Hope CK, Wilson M. 2004. Analysis of the effects of chlorhexidine on oral biofilm vitality and structure based on ivability profiling and an indicator of membrane integrity. Antimicrob Agents Chemother. 48:1461–1468. doi:10.1128/AAC.48.5.1461-1468.2004
  • Iglesias-Linares A, Yáñez-Vico RM, Sánchez-Borrego E, Moreno-Fernández AM, Solano-Reina E, Mendoza-Mendoza A. 2013. Stem cells in current paediatric dentistry practice. Arch Oral Biol. 58:227–238. doi:10.1016/j.archoralbio.2012.11.008
  • Jacob B, Park IS, Bang JK, Shin SY. 2013. Short KR-12 analogs designed from human cathelicidin LL37 possessing both antimicrobial and antiendotoxic activities without mammalian cell toxicity. J Pept Sci. 19:700–707. doi:10.1002/psc.v19.11
  • Järvinen H, Tenovuo J, Huovinen P. 1993. In vitro susceptibility of Streptococcus mutans to chlorhexidine and six other antimicrobial agents. Antimicrob Agents Chemother. 37:1158–1159. doi:10.1128/AAC.37.5.1158
  • Ji S, Hyun J, Park E, Lee BL, Kim KK, Choi Y. 2007. Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils. J Periodontal Res. 42:410–419. doi:10.1111/jre.2007.42.issue-5
  • Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. 1998. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37. J Biol Chem. 273:3718–3724. doi:10.1074/jbc.273.6.3718
  • Jönsson D, Nilsson BO. 2012. The antimicrobial peptide LL-37 is anti-inflammatory and proapoptotic in human periodontal ligament cells. J Periodontal Res. 47:330–335. doi:10.1111/jre.2012.47.issue-3
  • Kaiser E, Colescott RL, Bossinger CD, Cook PI. 1970. Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem. 34:595–598. doi:10.1016/0003-2697(70)90146-6
  • Kim EY, Rajasekaran G, Shin SY. 2017. LL-37-derived antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur J Med Chem. 18:428–441. doi:10.1016/j.ejmech.2017.05.028
  • Klüver E, Schulz-MarondeS Scheid S, Meyer B, Forssmann WG, Adermann K. 2005. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity. Biochemistry. 44:9804–9816. doi:10.1021/bi050272 k
  • Kreling PF, Aida KL, Massunari L, Caiaffa KS, Percinoto C, Bedran TB, Spolidorio DM, Abuna GF, Cilli EM, Duque C. 2016. Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions. Biofouling. 32:995–1006. doi:10.1080/08927014.2016.1218850
  • Leelakanok N, Fischer CL, Bates AM, Guthmiller JM, Johnson GK, Salem AK, Brogden KA, Brogden NK. 2015. Cytotoxicity of HBD3 for dendritic cells, normal human epidermal keratinocytes, hTERT keratinocytes, and primary oral gingival epithelial keratinocytes in cell culture conditions. Toxicol Lett. 239:90–96.
  • Lessa FCR, Aranha AMF, Nogueira I, Giro EMA, Hebling J, Costa CAS. 2010. Toxicity of chlorhexidine on odontoblast-like cells. J Appl Oral Sci. 18:50–58. doi:10.1590/S1678-77572010000100010
  • Luo Y, McLean DT, Linden GJ, McAuley DF, McMullan R, Lundy FT. 2017. The naturally occurring host defense peptide, LL-37, and its truncated mimetics KE-18 and KR-12 have selected biocidal and antibiofilm activities against Candida albicans, Staphylococcus aureus, and Escherichia coli in vitro. Front Microbiol. 31:544.
  • Ma J, Wang Z, Shen Y, Haapasalo M. 2011. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod. 37:1380–1385. doi:10.1016/j.joen.2011.06.018
  • Matsuzaki K. 2009. Control of cell selectivity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA). Biomembranes. 1788:1687–1692. doi:10.1016/j.bbamem.2008.09.013
  • Merrifield RB. 1963. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc. 2149–2154. doi:10.1021/ja00897a025
  • Mor A, Hani K, Nicolas PJ. 1994. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem. 269:31635–31641.
  • Nagant C, Pitts B, Nazmi K, Vandenbranden M, Bolscher JG, Stewart PS, Dehaye JP. 2012. Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments. Antimicrob Agents Chemother. 56:5698–5708. doi:10.1128/AAC.00918-12
  • Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M. 2005. Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. J Antimicrob Chemother. 55:888–896. doi:10.1093/jac/dki103
  • Overhage J, Campisano A, Bains M, Torfs E, Rehm B, Hancock R. 2008. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 76:4176–4182. doi:10.1128/IAI.00318-08
  • Rosenfeld Y, Lev N, Shai Y. 2010. Effect of the hydrophobicity to net positive charge ratio on antibacterial and anti-endotoxin activities of structurally similar antimicrobial peptides. Biochemistry. 49:853–861. doi:10.1021/bi900724x
  • Schibli DJ, Hunter HN, Aseyev V, Starner TD, Wiencek JM, McCray PB Jr, Tack BF, Vogel HJ. 2002. The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem. 277:8279–8289. doi:10.1074/jbc.M108830200
  • Silva ACB, Stipp RN, Mattos-Graner RO, Sampaio FC. 2014. Influence of sub-lethal and lethal concentrations of chlorhexidine on morphology and glucosyltransferase genes expression in Streptococcus mutans UA159. Adv Microbiol. 4:945–954. doi:10.4236/aim.2014.413105
  • Song W, Shi Y, Xiao M, Lu H, Qu T, Li P, Wu G, Tian Y. 2009. In vitro bactericidal activity of recombinant human beta-defensin-3 against pathogenic bacterial strains in humantooth root canal. Int J Antimicrob Agents. 33:237–243. doi:10.1016/j.ijantimicag.2008.05.022
  • Taylor K, Clarke DJ, McCullough B, Chin W, Seo E, Yang D, Oppenheim J, Uhrin D, Govan JR, Campopiano DJ, et al. 2008. Analysis and separation of residues important for chemoattractant and antimicrobial activities of beta-defensin3. J Biol Chem. 283:6631–6639. doi:10.1074/jbc.M709238200
  • Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS. 2006. Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol. 140:103–112. doi:10.1159/000092305
  • Vandamme D, Landuyt B, Luyten W, Schoofs L. 2012. A comprehensive summary of LL-37, the factotum human cathelicidin peptide. Cell Immunol. 280:22–35. doi:10.1016/j.cellimm.2012.11.009
  • Wang G. 2008. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J Biol Chem. 283:32637–32643. doi:10.1074/jbc.M805533200
  • Wang Y, Fan Y, Zhou Z, Tu H, Ren Q, Wang X, Ding L, Zhou X, Zhang L. 2017. De novo synthetic short antimicrobial peptides against cariogenic bacteria. Arch Oral Biol. 25:41–50. doi:10.1016/j.archoralbio.2017.03.017
  • Wiesner J, Vilcinskas A. 2010. Antimicrobial peptides – the ancient arm of the human immune system. Virulence. 1:440–464. doi:10.4161/viru.1.5.12983
  • Won JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. 2011. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides. 32:1996–2002.
  • Zanatta FB, Antoniazzi RP, Rösing CK. 2007. The effect of 0.12% chlorhexidine rinsing in previously plaque-free and plaque-covered surfaces. A randomized controlled clinical trial. J Periodontol. 78:2127–2213. doi:10.1902/jop.2007.070090

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.