Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 34, 2018 - Issue 3
332
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Thermostable xylanase inhibits and disassembles Pseudomonas aeruginosa biofilms

, &
Pages 346-356 | Received 07 Jul 2017, Accepted 09 Feb 2018, Published online: 04 Apr 2018

References

  • Araujo PA, Machado I, Meireles A, Leiknes T, Mergulhao F, Melo LF, Simões M. 2017. Combination of selected enzymes with cetyltrimethylammonium bromide in biofilm inactivation, removal and regrowth. Food Res Int. 95:101–107. doi:10.1016/j.foodres.2017.02.01610.1016/j.foodres.2017.02.016
  • Attila C, Ueda A, Cirillo SLG, Cirillo JD, Chen W, Wood TK. 2008. Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microbial Biotechnol. 1:17–29.doi:10.1111/j.1751-7915.2007.00002.x
  • Banar M, Emaneini M, Satarzadeh M, Abdellahi N, Beigverdi R, Leeuwen WB, Jabalameli F. 2016. Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. PLoS ONE. 11:e0164622. doi:10.1371/journal.pone.016462210.1371/journal.pone.0164622
  • Boyd A, Chakrabarty AM. 1994. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol. 60:2355–2359.
  • Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science. 284:1318–1322. doi:10.1126/science.284.5418.131810.1126/science.284.5418.1318
  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science. 280:295–298. doi:10.1126/science.280.5361.29510.1126/science.280.5361.295
  • Eckhart L, Fischer H, Barken KV, Tolker-Nielsen T, Tschachler E. 2007. DNase1L2 suppresses biofilm formation by Pseudomonas aeruginosa and Staphylococcus aureus. Br J Dermatol. 156:1342–1345. doi:10.1111/j.1365-2133.2007.07886.x10.1111/j.1365-2133.2007.07886.x
  • Essar DW, Eberly L, Hadero A, Crawford IP. 1990. Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol. 172:884–900. doi:10.1128/jb.172.2.884-900.199010.1128/jb.172.2.884-900.1990
  • Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8:623–633. doi:10.1038/nrmicro241510.1038/nrmicro2415
  • Friedman L, Kolter R. 2004. Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol. 51:675–690.
  • Gupta RV, Seita S, Harjai K. 2011. Expression of quorum sensing and virulence factors are interlinked in Pseudomonas aeruginosa: an in vitro approach. Am J Biomed Sci. 3:116–125. doi:10.5099/aj11020011610.5099/aj110200116
  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 146:2395–2407. doi:10.1099/00221287-146-10-239510.1099/00221287-146-10-2395
  • Holloway BW. 1955. Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol. 13:572–581.doi:10.1099/00221287-13-3-572
  • Johansen C, Falholt P, Gram L. 1997. Enzymatic removal and disinfection of bacterial biofilms. Appl Environ Microbiol. 63:3724–3728.
  • Kim HS, Park HD. 2013. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS ONE. 8:e76106. doi:10.1371/journal.pone.007610610.1371/journal.pone.0076106
  • Kim Y-G, Lee J-H, Kim CJ, Lee J-C, Ju YJ, Cho MH, Lee J. 2012. Antibiofilm activity of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 against Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 96:1607–1617. doi:10.1007/s00253-012-4225-710.1007/s00253-012-4225-7
  • Kolter R, Greenberg EP. 2006. Microbial sciences: the superficial life of microbes. Nature. 441:300–302. doi:10.1038/441300a10.1038/441300a
  • Kristensen JB, Meyer RL, Laursen BS, Shipovskov S, Besenbacher F, Poulsen CH. 2008. Antifouling enzymes and the biochemistry of marine settlement. Biotechnol Adv. 26:471–481. doi:10.1016/j.biotechadv.2008.05.00510.1016/j.biotechadv.2008.05.005
  • Lee J-H, Cho MH, Lee J. 2011. 3-Indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ Microbiol. 13:62–73. doi:10.1111/emi.2011.13.issue-110.1111/emi.2011.13.issue-1
  • Leroy C, Delbarre C, Ghillebaert F, Compere C, Combes D. 2008. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium. Biofouling. 24:11–22. doi:10.1080/0892701070178491210.1080/08927010701784912
  • Lewenza S, Falsafi RK, Winsor G, Gooderham WJ, McPhee JB, Brinkman FS, Hancock RE. 2005. Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: a tool for identifying differentially regulated genes. Genome Res. 15:583–589. doi:10.1101/gr.351390510.1101/gr.3513905
  • Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ. 2009. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog. 5:e1000354. doi:10.1371/journal.ppat.100035410.1371/journal.ppat.1000354
  • Mah TF, O’Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9:34–39. doi:10.1016/S0966-842X(00)01913-210.1016/S0966-842X(00)01913-2
  • McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology. 143:3703–3711. doi:10.1099/00221287-143-12-370310.1099/00221287-143-12-3703
  • Meireles A, Borges A, Giaouris E, Simões M. 2016. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int. 86:140–146. doi:10.1016/j.foodres.2016.06.00610.1016/j.foodres.2016.06.006
  • Nemoto K, Hirota K, Murakami K, Taniguti K, Murata H, Viducic D, Miyake Y. 2003. Effect of Varidase (streptodornase) on biofilm formed by Pseudomonas aeruginosa. Chemotherapy. 49:121–125. doi:10.1159/00007061710.1159/000070617
  • Polizeli ML, Rizzatti AC, Monti R, Terenzi HF, Jorge JA, Amorim DS. 2005. Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol. 67:577–591. doi:10.1007/s00253-005-1904-710.1007/s00253-005-1904-7
  • Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM. 1995. Common virulence factors for bacterial pathogenicity in plants and animals. Science. 268:1899–1902. doi:10.1126/science.760426210.1126/science.7604262
  • Ryder C, Byrd M, Wozniak DJ. 2007. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol. 10:644–648. doi:10.1016/j.mib.2007.09.01010.1016/j.mib.2007.09.010
  • Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP. 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 407:762–764. doi:10.1038/3503762710.1038/35037627
  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, et al. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature. 406:959–964. doi:10.1038/3502307910.1038/35023079
  • Subramaniyan S, Prema P. 2002. Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol. 22:33–64. doi:10.1080/0738855029078945010.1080/07388550290789450
  • Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, Koch B, Givskov M, Kjelleberg S. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol. 185:4585–4592. doi:10.1128/JB.185.15.4585-4592.200310.1128/JB.185.15.4585-4592.2003
  • Whitchurch C, Tolker-Nielsen T, Ragas PC, Mattick JS. 2002. Extracellular DNA required for bacterial biofilm formation. Science. 295:1487. doi:10.1126/science.295.5559.148710.1126/science.295.5559.1487
  • Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger K-E. 2007. The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol. 189:6695–6703. doi:10.1128/JB.00023-0710.1128/JB.00023-07
  • Wozniak DJ, Wyckoff TJO, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR. 2003. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA. 100:7907–7912. doi:10.1073/pnas.123179210010.1073/pnas.1231792100
  • Xavier JB, Picioreanu C, Rani SA, van Loosdrecht MC, Stewart PS. 2005. Biofilm-control strategies based on enzymic disruption of the extracellular polymeric substance matrix – a modelling study. Microbiology. 151:3817–3832. doi:10.1099/mic.0.28165-010.1099/mic.0.28165-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.