Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 34, 2018 - Issue 4
146
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Potential of antimicrobial treatment of linear low-density polyethylene with poly((tert-butyl-amino)-methyl-styrene) to reduce biofilm formation in the food industry

ORCID Icon, , , , , , & show all
Pages 378-387 | Received 20 Aug 2017, Accepted 12 Mar 2018, Published online: 17 Apr 2018

References

  • Abdallah M, Benoliel C, Drider D, Dhulster P, Chihib N-E. 2014. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol. 196:453–472. doi: 10.1007/s00203-014-0983-1.10.1007/s00203-014-0983-1
  • Al-Adawi AS, Gaylarde CC, Sunner J, Beech IB. 2016. Transfer of bacteria between stainless steel and chicken meat: a CLSM and DGGE study of biofilms. AIMS Microbiol. 2:340–358. doi: 10.3934/microbiol.2016.3.340.10.3934/microbiol.2016.3.340
  • Almeida C, Azevedo NF, Santos S, Keevil CW, Vieira MJ. 2011. Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS ONE. 6:e14786. doi: 10.1371/journal.pone.0014786.10.1371/journal.pone.0014786
  • Bagge-Ravn D, Ng Y, Hjelm M, Christiansen JN, Johansen C, Gram L. 2003. The microbial ecology of processing equipment in different fish industries – analysis of the microflora during processing and following cleaning and disinfection. Int J Food Microbiol. 87:239–250. doi: 10.1016/S0168-1605(03)00067-9.10.1016/S0168-1605(03)00067-9
  • Banks MK, Bryers JD. 1991. Bacterial species dominance within a binary culture biofilm. Appl Environ Microbiol. 57:1974–1979.
  • Berrang ME, Meinersmann RJ, Frank JF, Smith DP, Genzlinger LL. 2005. Distribution of Listeria monocytogenes subtypes within a poultry further processing plant. J Food Prot. 68:980–985. doi: 10.4315/0362-028X-68.5.980.10.4315/0362-028X-68.5.980
  • Bower CK, McGuire J, Daeschel MA. 1996. The adhesion and detachment of bacteria and spores on food-contact surfaces. Trends Food Sci Technol. 7:152–157. doi: 10.1016/0924-2244(96)81255-6.10.1016/0924-2244(96)81255-6
  • Braun C, Dohlen S, Ilg Y, Brodkorb F, Fischer B, Heindirk P, Kalbfleisch K, Richter T, Robers O, Kreyenschmidt M, et al. 2017. Antimicrobial activity of intrinsic antimicrobial polymers based on poly((tertbutyl-amino)-methyl-styrene) against selected pathogenic and spoilage microorganisms relevant in meat processing facilities. J Antimicrob Agents. 3:136.
  • Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. 2011. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 27:1017–1032. doi: 10.1080/08927014.2011.626899.10.1080/08927014.2011.626899
  • Brodkorb F, Fischer B, Kalbfleisch K, Robers O, Braun C, Dohlen S, Kreyenschmidt J, Lorenz R, Kreyenschmidt M. 2015. Development of a new monomer for the synthesis of intrinsic antimicrobial polymers with enhanced material properties. Int J Mol Sci. 16:20050–20066. doi: 10.3390/ijms160820050.10.3390/ijms160820050
  • Carrasco E, Morales-Rueda A, García-Gimeno RM. 2012. Cross-contamination and recontamination by Salmonella in foods: a review. Food Res Int. 45:545–556. doi: 10.1016/j.foodres.2011.11.004.10.1016/j.foodres.2011.11.004
  • Castonguay M-H, van der Schaaf S, Koester W, Krooneman J, van der Meer W, Harmsen H, Landini P. 2006. Biofilm formation by Escherichia coli is stimulated by synergistic interactions and co-adhesion mechanisms with adherence-proficient bacteria. Res Microbiol. 157:471–478. doi: 10.1016/j.resmic.2005.10.003.10.1016/j.resmic.2005.10.003
  • Chaw KC, Manimaran M, Tay FEH. 2005. Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother. 49:4853–4859. doi: 10.1128/AAC.49.12.4853-4859.2005.10.1128/AAC.49.12.4853-4859.2005
  • Chmielewski R, Frank J. 2003. Biofilm formation and control in food processing facilities. Comp Rev Food Sci Food Safety. 2:22–32. doi: 10.1111/crfs.2003.2.issue-1.10.1111/crfs.2003.2.issue-1
  • Chorianopoulos NG, Giaouris ED, Skandamis PN, Haroutounian SA, Nychas G-JE. 2008. Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid–base sanitizers. J Appl Microbiol. 104:1586–1596. doi: 10.1111/j.1365-2672.2007.03694.x.10.1111/j.1365-2672.2007.03694.x
  • Davies DG, Geesey GG. 1995. Regulation of the alginate biosynthesis gene algC in Pseudomonas aeruginosa during biofilm development in continuous culture. Appl Environ Microbiol. 61:860–867.
  • Di Bonaventura G, Piccolomini R, Paludi D, D’Orio V, Vergara A, Conter M, Ianieri A. 2008. Influence of temperature on biofilm formation by Listeria monocytogenes on various food-contact surfaces: relationship with motility and cell surface hydrophobicity. J Appl Microbiol. 104:1552–1561. doi: 10.1111/j.1365-2672.2007.03688.x.10.1111/j.1365-2672.2007.03688.x
  • Dohlen S, Braun C, Brodkorb F, Fischer B, Ilg Y, Kalbfleisch K, Lorenz R, Robers O, Kreyenschmidt M, Kreyenschmidt J. 2016. Potential of the polymer poly-[2-(tert-butylamino) methylstyrene] as antimicrobial packaging material for meat products. J Appl Microbiol. 121:1059–1070. doi: 10.1111/jam.2016.121.issue-4.10.1111/jam.2016.121.issue-4
  • Dohlen S, Braun C, Brodkorb F, Fischer B, Ilg Y, Kalbfleisch K, Lorenz R, Kreyenschmidt M, Kreyenschmidt J. 2017. Effect of different packaging materials containing poly-[2-(tert-butylamino) methylstyrene] on the growth of spoilage and pathogenic bacteria on fresh meat. Int J Food Microbiol. 257:91–100. doi: 10.1016/j.ijfoodmicro.2017.06.007.10.1016/j.ijfoodmicro.2017.06.007
  • Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerging Infect Dis. 8:881–890. doi: 10.3201/eid0809.020063.10.3201/eid0809.020063
  • Dourou D, Beauchamp CS, Yoon Y, Geornaras I, Belk KE, Smith GC, Nychas G-JE, Sofos JN. 2011. Attachment and biofilm formation by Escherichia coli O157:H7 at different temperatures, on various food-contact surfaces encountered in beef processing. Int J Food Microbiol. 149:262–268. doi: 10.1016/j.ijfoodmicro.2011.07.004.10.1016/j.ijfoodmicro.2011.07.004
  • Elchinger P-H, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C, Michaud P. 2015. Immobilization of proteases on chitosan for the development of films with anti-biofilm properties. Int J Biol Macromol. 72:1063–1068. doi: 10.1016/j.ijbiomac.2014.09.061.10.1016/j.ijbiomac.2014.09.061
  • Fisher L, Ostovapour S, Kelly P, Whitehead KA, Cooke K, Storgards E, Verran J. 2014. Molybdenum doped titanium dioxide photocatalytic coatings for use as hygienic surfaces: the effect of soiling on antimicrobial activity. Biofouling. 30:911–919. doi: 10.1080/08927014.2014.939959.10.1080/08927014.2014.939959
  • Frank JF. 2001. Microbial attachment to food and food contact surfaces. In: Henry J, editor. 74. Advances in food and nutrition research. Vol. 43. Cambridge: Elsevier; p. 319–370 ( Advances in Food and Nutrition Research).
  • Genigeorgis C. 1995. Biofilm: their significance to cleaning in the meat sector. In: Burt SA, Bauer F, editors. New challenges in meat hygiene: specific problems in cleaning and disinfection. Vol. 99. Utrecht: Ecceamst; p. 29–47.
  • Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas G-J, Kačániová M, Czaczyk K, et al. 2015. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol. 6:841–866.
  • Giaouris ED, Nychas G-JE. 2006. The adherence of Salmonella Enteritidis PT4 to stainless steel: the importance of the air–liquid interface and nutrient availability. Food Microbiol. 23:747–752. doi: 10.1016/j.fm.2006.02.006.
  • Glinel K, Thebault P, Humblot V, Pradier C-M, Jouenne T. 2012. Antibacterial surfaces developed from bio-inspired approaches. Acta biomaterialia. 8:1670–1684.
  • Gutierrez D, Delgado S, Vazquez-Sanchez D, Martinez B, Cabo ML, Rodriguez A, Herrera JJ, Garcia P. 2012. Incidence of Staphylococcus aureus and analysis of associated bacterial communities on food industry surfaces. Appl Environ Microbiol. 78:8547–8554. doi: 10.1128/AEM.02045-12.10.1128/AEM.02045-12
  • Hasan J, Crawford RJ, Ivanova EP. 2013. Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 31:295–304. doi: 10.1016/j.tibtech.2013.01.017.10.1016/j.tibtech.2013.01.017
  • Hassan AN, Birt DM, Frank JF. 2004. Behavior of Listeria monocytogenes in a Pseudomonas putida biofilm on a condensate-forming surface. J Food Prot. 67:322–327. doi: 10.4315/0362-028X-67.2.322.10.4315/0362-028X-67.2.322
  • Héquet A, Humblot V, Berjeaud J-M, Pradier C-M. 2011. Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloids Surf. B. 84:301–309.
  • Hood SK, Zottola EA. 1997. Adherence to stainless steel by foodborne microorganisms during growth in model food systems. Int J Food Microbiol. 37:145–153. doi: 10.1016/S0168-1605(97)00071-8.
  • James GA, Beaudette L, Costerton JW. 1995. Interspecies bacterial interactions in biofilms. J Ind Microbiol. 15:257–262. doi: 10.1007/BF01569978.10.1007/BF01569978
  • Jorge P, Lourenco A, Pereira MO. 2012. New trends in peptide-based anti-biofilm strategies: a review of recent achievements and bioinformatic approaches. Biofouling. 28:1033–1061. doi: 10.1080/08927014.2012.728210.10.1080/08927014.2012.728210
  • Karam L, Jama C, Dhulster P, Chihib N-E. 2013. Study of surface interactions between peptides, materials and bacteria for setting up antimicrobial surfaces and active food packaging. J Mater Environ Sci. 4:798–821.
  • Klayman BJ, Volden PA, Stewart PS, Camper AK. 2009. Escherichia coli O157: H7 requires colonizing partner to adhere and persist in a capillary flow cell. Environ Sci Technol. 43:2105–2111. doi: 10.1021/es802218q.10.1021/es802218q
  • Kumar CG, Anand SK. 1998. Significance of microbial biofilms in food industry: a review. Int J Food Microbiol. 42:9–27. doi: 10.1016/S0168-1605(98)00060-9.10.1016/S0168-1605(98)00060-9
  • Lindsay D, von Holy A. 1997. Evaluation of dislodging methods for laboratory-grown bacterial biofilms. Food Microbiol. 14:383–390. doi: 10.1006/fmic.1997.0102.10.1006/fmic.1997.0102
  • Marra J, Paleari AG, Rodriguez LS, Leite ARP, Pero AC, Compagnoni MA. 2012. Effect of an acrylic resin combined with an antimicrobial polymer on biofilm formation. J Appl Oral Sci. 20:643–648. doi: 10.1590/S1678-77572012000600009.10.1590/S1678-77572012000600009
  • Meyer B. 2003. Approaches to prevention, removal and killing of biofilms. Int Biodeterior Biodegradation. 51:249–253. doi: 10.1016/S0964-8305(03)00047-7.10.1016/S0964-8305(03)00047-7
  • Millezi FM, Pereira MO, Batista NN, Camargos N, Auad I, Cardoso M, Piccoli RH. 2012. Susceptibility of monospecies and dual-species biofilms of Staphylococcus aureus and Escherichia coli to essential oils. J Food Saf. 32:351–359. doi: 10.1111/jfs.2012.32.issue-3.10.1111/jfs.2012.32.issue-3
  • Moerman F. 2014. Antimicrobial materials, coatings and biomimetic surfaces with modified microtography to control microbial fouling of product contact surfaces within food processing equipment: legislation, requirements, effectiveness and challenges. J Hyg Eng Des. 7:8–29.
  • Møretrø T, Høiby-Pettersen GS, Halvorsen CK, Langsrud S. 2012. Antibacterial activity of cutting boards containing silver. Food Control. 28:118–121. doi: 10.1016/j.foodcont.2012.05.007.10.1016/j.foodcont.2012.05.007
  • Pompermayer DMC, Gaylarde CC. 2000. The influence of temperature on the adhesion of mixed cultures of Staphylococcus aureus and Escherichia coli to polypropylene. Food Microbiol. 17:361–365. doi: 10.1006/fmic.1999.0291.10.1006/fmic.1999.0291
  • Rendueles O, Travier L, Latour-Lambert P, Fontaine T, Magnus J, Denamur E, Ghigo J-M. 2011. Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. mBio. 2:e00043-11.
  • Renier S, Hébraud M, Desvaux M. 2011. Molecular biology of surface colonization by Listeria monocytogenes: an additional facet of an opportunistic Gram-positive foodborne pathogen. Environ Microbiol. 13:835–850. doi: 10.1111/emi.2011.13.issue-4.10.1111/emi.2011.13.issue-4
  • Reuter M, Mallett A, Pearson BM, van Vliet AHM. 2010. Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol. 76:2122–2128. doi: 10.1128/AEM.01878-09.10.1128/AEM.01878-09
  • Roder HL, Raghupathi PK, Herschend J, Brejnrod A, Knochel S, Sorensen SJ, Burmolle M. 2015. Interspecies interactions result in enhanced biofilm formation by co-cultures of bacteria isolated from a food processing environment. Food Microbiol. 51:18–24. doi: 10.1016/j.fm.2015.04.008.10.1016/j.fm.2015.04.008
  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J-B. 2008. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemother. 61:869–876. doi: 10.1093/jac/dkn034.10.1093/jac/dkn034
  • Sasahara KC, Zottola EA. 1993. Biofilm formation by Listeria monocytogenes utilizes a primary colonizing microorganism in flowing systems. J Food Prot. 56:1022–1028. doi: 10.4315/0362-028X-56.12.1022.10.4315/0362-028X-56.12.1022
  • Seyfriedsberger G, Rametsteiner K, Kern W. 2006. Polyethylene compounds with antimicrobial surface properties. Eur Polym J. 42:3383–3389. doi: 10.1016/j.eurpolymj.2006.07.026.10.1016/j.eurpolymj.2006.07.026
  • Siedenbiedel F, Tiller JC. 2012. Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers (Basel). 4:46–71. doi: 10.3390/polym4010046.10.3390/polym4010046
  • Simões M, Simões LC, Vieira MJ. 2010. A review of current and emergent biofilm control strategies. LWT - Food Sci Technol. 43:573–583. doi: 10.1016/j.lwt.2009.12.008.10.1016/j.lwt.2009.12.008
  • Sofos JN, Geornaras I. 2010. Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157:H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Sci. 86:2–14. doi: 10.1016/j.meatsci.2010.04.015.10.1016/j.meatsci.2010.04.015
  • Sommer P, Martin-Rouas C, Mettler E. 1999. Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol. 16:503–515. doi: 10.1006/fmic.1999.0267.
  • Srey S, Jahid IK, Ha S-D. 2013. Biofilm formation in food industries: a food safety concern. Food Control. 31:572–585. doi: 10.1016/j.foodcont.2012.12.001.10.1016/j.foodcont.2012.12.001
  • Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol. 56:187–209. doi: 10.1146/annurev.micro.56.012302.160705.10.1146/annurev.micro.56.012302.160705
  • Tabak M, Scher K, Hartog E, Romling U, Matthews KR, Chikindas ML, Yaron S. 2007. Effect of triclosan on Salmonella typhimurium at different growth stages and in biofilms. FEMS Microbiol Lett. 267:200–206. doi: 10.1111/fml.2007.267.issue-2.10.1111/fml.2007.267.issue-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.