Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 1
353
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

A benzimidazole-based ruthenium(IV) complex inhibits Pseudomonas aeruginosa biofilm formation by interacting with siderophores and the cell envelope, and inducing oxidative stress

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , , , , , & ORCID Icon show all
Pages 59-74 | Received 14 Jun 2018, Accepted 24 Dec 2018, Published online: 07 Feb 2019

References

  • Abebe A, Hailemariam T. 2016. Synthesis and assessment of antibacterial activities of ruthenium(III) mixed ligand complexes containing 1,10-phenanthroline and guanide. Bioinorg Chem Appl. 2016:1–9. doi: 10.1155/2016/3607924
  • Abu-Dief AM, Mohamed IMA. 2015. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci. 4:119–133. doi: 10.1016/j.bjbas.2015.05.004
  • Alhama J, Ruiz-Laguna J, Rodriguez-Ariza A, Toribio F, López-Barea J, Pueyo C. 1998. Formation of 8-oxoguanine in cellular DNA of Escherichia coli strains defective in different antioxidant defences. Mutagenesis. 13:589–594. doi: 10.1093/mutage/13.6.589
  • Ali Ezadyar S, Kumbhar AS, Kumbhar AA, Khan A. 2012. Binuclear ruthenium(II) polypyridyl complexes: DNA cleavage and mitochondria mediated apoptosis induction. Polyhedron. 36:45–55. doi: 10.1016/j.poly.2012.01.024
  • Alqarni B, Colley B, Klebensberger J, McDougald D, Rice SA. 2016. Expression stability of 13 housekeeping genes during carbon starvation of Pseudomonas aeruginosa. J Microbiol Methods. 127:182–187. doi: 10.1016/j.mimet.2016.06.008
  • Beeton ML, Aldrich-Wright JR, Bolhuis A. 2014. The antimicrobial and antibiofilm activities of copper(II) complexes. J Inorg Biochem. 140:167–172. doi: 10.1016/j.jinorgbio.2014.07.012
  • Bertin C, Pau-Roblot C, Courtois J, Manso-Silván L, Thiaucourt F, Tardy F, Le Grand D, Poumarat F, Gaurivaud P. 2013. Characterization of free exopolysaccharides secreted by Mycoplasma mycoides subsp. mycoides. PLoS One. 8:e68373. doi: 10.1371/journal.pone.0068373
  • Bichara M, Pinet I, Lambert IB, Fuchs RPP. 2007. RecA-mediated excision repair: A novel mechanism for repairing DNA lesions at sites of arrested DNA synthesis. Mol Microbiol. 65:218–229. doi: 10.1111/j.1365-2958.2007.05790.x
  • Borlee BR, Goldman AD, Murakami K, Samudrala R, Wozniak DJ, Parsek MR. 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol. 75:827–842. doi: 10.1111/j.1365-2958.2009.06991.x
  • Britigan BE, Miller RA, Hassett DJ, Pfaller MA, Cormick MLMC, Rasmussen GT. 2001. Antioxidant enzyme expression in clinical isolates of Pseudomonas aeruginosa: identification of an atypical form of manganese superoxide dismutase. Infect Immun. 69:7396–7401. doi: 10.1128/IAI.69.12.7396-7401.2001
  • Cabiscol E, Tamarit J, Ros J. 2000. Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol. 3:3–8.
  • Casali N. 2003. Escherichia coli host strains. Methods Mol Biol. 235:27–48.
  • Cieśla J, Bieganowski A, Janczarek M, Urbanik-Sypniewska T. 2011. Determination of the electrokinetic potential of Rhizobium leguminosarum bv trifolii Rt24.2 using Laser Doppler Velocimetry-a methodological study. J Microbiol Methods. 85:199–205. doi: 10.1016/j.mimet.2011.03.004
  • Clarke MJ. 2002. Ruthenium metallopharmaceuticals. Coord Chem Rev. 232:69–93. doi: 10.1016/S0010-8545(02)00025-5
  • Cornelis P. 2010. Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol. 86:1637–1645. doi: 10.1007/s00253-010-2550-2
  • Cullen L, Weiser R, Olszak T, Maldonado RF, Slachmuylders L, Brackman G, Paunova-Krasteva TS, Zarnowiec P, Czerwonka G, Reilly J, et al. 2015. Phenotypic characterization of an international Pseudomonas aeruginosa reference panel: strains of cystic fibrosis (CF) origin show less in vivo virulence than non-CF strains. Microbiology 161:1961–1977. doi: 10.1099/mic.0.000155
  • Cussac C, Laval F. 1996. Reduction of the toxicity and mutagenicity of aziridine in mammalian cells harboring the Escherichia coli fpg gene. Nucleic Acids Res. 24:1742–1746. doi: 10.1093/nar/24.9.1742
  • Czerwonka G, Guzy A, Kałuża K, Grosicka M, Dańczuk M, Lechowicz Ł, Gmiter D, Kowalczyk P, Kaca W. 2016. The role of Proteus mirabilis cell wall features in biofilm formation. Arch Microbiol. 198:877–884. doi: 10.1007/s00203-016-1249-x
  • Ezraty B, Gennaris A, Barras F, Collet J-F. 2017. Oxidative stress, protein damage and repair in bacteria. Nat Rev Microbiol. 15:385–396. doi: 10.1038/nrmicro.2017.26
  • Fournier A, Voirol P, Krähenbühl M, Bonnemain C-L, Fournier C, Pantet O, Pagani J-L, Revelly J-P, Dupuis-Lozeron E, Sadeghipour F, et al. 2016. Antibiotic consumption to detect epidemics of Pseudomonas aeruginosa in a burn centre: a paradigm shift in the epidemiological surveillance of Pseudomonas aeruginosa nosocomial infections. Burns. 42:564–570. doi: 10.1016/j.burns.2015.10.030
  • Frederick JR, Elkins JG, Bollinger N, Hassett DJ, McDermott TR. 2001. Factors affecting catalase expression in Pseudomonas aeruginosa biofilms and planktonic cells. Appl Environ Microbiol. 67:1375–1379. doi: 10.1128/AEM.67.3.1375-1379.2001
  • Haiko J, Westerlund-Wikström B. 2013. The role of the bacterial flagellum in adhesion and virulence. Biology (Basel). 2:1242–1267. doi: 10.3390/biology2041242
  • Hannauer M, Barda Y, Mislin GLA, Shanzer A, Schalk IJ. 2010. The ferrichrome uptake pathway in Pseudomonas aeruginosa involves an iron release mechanism with acylation of the siderophore and recycling of the modified desferrichrome. J Bacteriol. 192:1212–1220. doi: 10.1128/JB.01539-09
  • Hong R, Kang TY, Michels CA, Gadura N. 2012. Membrane lipid peroxidation in copper alloy-mediated contact killing of Escherichia coli. Appl Environ Microbiol. 78:1776–1784. doi: 10.1128/AEM.07068-11
  • Imperi F, Tiburzi F, Visca P. 2009. Molecular basis of pyoverdine siderophore recycling in Pseudomonas aeruginosa. Proc Natl Acad Sci Usa. 106:20440–20445. doi: 10.1073/pnas.0908760106
  • Jabłońska-Wawrzycka A, Rogala P, Michałkiewicz S, Hodorowicz M, Barszcz B. 2013. Ruthenium complexes in different oxidation states: synthesis, crystal structure, spectra and redox properties. Dalton Trans. 42:6092–6101. doi: 10.1039/c3dt32214a
  • Johnson NA, Mckenzie R, Mclean L, Sowers LC, Fletcher M. 2004. 8-Oxo-7,8-dihydroguanine is removed by a nucleotide excision repair-like mechanism in Porphyromonas gingivalis W83. J Bacteriol. 186:7697–7703. doi: 10.1128/JB.186.22.7697-7703.2004
  • Jurado J, Saparbaev M, Matray TJ, Greenberg MM, Laval J. 1998. The ring fragmentation product of thymidine C5-hydrate when present in DNA is repaired by the Escherichia coli Fpg and Nth proteins. Biochemistry. 37:7757–7763. doi: 10.1021/bi972982z
  • Kowalczyk P, Borkowski A, Czerwonka G, Cłapa T, Cieśla J, Misiewicz A, Borowiec M, Szala M. 2018. The microbial toxicity of quaternary ammonium ionic liquids is dependent on the type of lipopolysaccharide. J Mol Liq. 266:540–547. doi: 10.1016/j.molliq.2018.06.102
  • Laurent Q, Batchelor LK, Dyson PJ. 2018. Applying a Trojan Horse strategy to ruthenium complexes in the pursuit of novel antibacterial agents. Organometallics. 37:915–923. doi: 10.1021/acs.organomet.7b00885
  • Laverty G, Gorman S, Gilmore B. 2014. Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens. 3:596–632. doi: 10.3390/pathogens3030596
  • Lee J, Attila C, Cirillo SLG, Cirillo JD, Wood TK. 2009. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol. 2:75–90. doi: 10.1111/j.1751-7915.2008.00061.x
  • Lee JH, Kim YG, Cho MH, Kim JA, Lee J. 2012. 7-fluoroindole as an antivirulence compound against Pseudomonas aeruginosa. FEMS Microbiol Lett. 329:36–44. doi: 10.1111/j.1574-6968.2012.02500.x
  • Lemire JA, Harrison JJ, Turner RJ. 2013. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 11:371–384. doi: 10.1038/nrmicro3028
  • Li F, Collins JG, Keene FR. 2015. Ruthenium complexes as antimicrobial agents. Chem Soc Rev. 44:2529–2542. doi: 10.1039/C4CS00343H
  • Li S, Wu C, Tang X, Gao S, Zhao X, Yan H, Wang X. 2013. New strategy for reversing biofilm-associated antibiotic resistance through ferrocene-substituted carborane ruthenium(II)-arene complex. Sci China Chem. 56:595–603. doi: 10.1007/s11426-012-4812-6
  • Periasamy S, Nair HAS, Lee KWK, Ong J, Goh JQJ, Kjelleberg S, Rice SA. 2015. Pseudomonas aeruginosa PAO1 exopolysaccharides are important for mixed species biofilm community development and stress tolerance. Front Microbiol. 6:1–10.
  • Pillai SI, Vijayaraghavan K, Subramanian S. 2014. Evaluation of DNA-binding, cleavage, BSA interaction of zn-hydroxy flavone complex. Der Pharma Chem. 6:379–389.
  • Prosser KE, Chang SW, Saraci F, Le PH, Walsby CJ. 2017. Anticancer copper pyridine benzimidazole complexes: ROS generation, biomolecule interactions, and cytotoxicity. J Inorg Biochem. 167:89–99. doi: 10.1016/j.jinorgbio.2016.11.006
  • Qian J, Ma X, Tian J, Gu W, Shang J, Liu X, Yan S. 2010. Hydrolytic cleavage of double-strand DNA by the water-soluble dicobalt(III) complexes of 1,4,7-Triazacyclononane-N-acetate. J Inorg Biochem. 104:993–999. doi: 10.1016/j.jinorgbio.2010.05.005
  • Quinteros MA, Cano Aristizábal V, Dalmasso PR, Paraje MG, Páez PL. 2016. Oxidative stress generation of silver nanoparticles in three bacterial genera and its relationship with the antimicrobial activity. Toxicol Vitr. 36:216–223. doi: 10.1016/j.tiv.2016.08.007
  • Rajendiran V, Karthik R, Palaniandavar M, Stoeckli-Evans H, Periasamy VS, Akbarsha MA, Srinag BS, Krishnamurthy H. 2007. Mixed-ligand copper(II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity. Inorg Chem. 46:8208–8221. doi: 10.1021/ic700755p
  • Ramadevi P, Singh R, Prajapati A, Gupta S, Chakraborty D. 2014. Cu (II) complexes of isoniazid Schiff bases: DNA/BSA binding and cytotoxicity studies on A549 cell line. Adv Chem. 2014:1–14. doi: 10.1155/2014/630575
  • Del Rio D, Stewart AJ, Pellegrini N. 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis. 15:316–328. doi: 10.1016/j.numecd.2005.05.003
  • Rizzoto M. 2012. Metal complexes as antimicrobial agents. Bobbarala, Varaprasad, editors. Rijeka: InTech.
  • Roy R, Tiwari M, Donelli G, Tiwari V. 2017. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 9:522–554.
  • Salahuddin SM, Mazumder A. 2017. Benzimidazoles: biologically active compounds. Arab J Chem. 10:S157–S173. doi: 10.1016/j.arabjc.2012.07.017
  • Sambanthamoorthy K, Gokhale AA, Lao W, Parashar V, Neiditch MB, Semmelhack MF, Lee I, Waters CM. 2011. Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob Agents Chemother. 55:4369–4378. doi: 10.1128/AAC.00583-11
  • Sampath K, Jayabalakrishnan C. 2014. Biomolecular interaction and cytotoxicity of ruthenium(III) benzothiazole substituted ferrocenyl thiosemicarbazone complexes. Arab J Chem. 10:S3207–S3215.
  • Sathyadevi P, Krishnamoorthy P, Bhuvanesh NSP, Kalaiselvi P, Vijaya Padma V, Dharmaraj N. 2012. Organometallic ruthenium(II) complexes: synthesis, structure and influence of substitution at azomethine carbon towards DNA/BSA binding, radical scavenging and cytotoxicity. Eur J Med Chem. 55:420–431. doi: 10.1016/j.ejmech.2012.08.001
  • Shahabadi N, Kashanian S, Mahdavi M, Sourinejad N. 2011. DNA interaction and DNA cleavage studies of a new platinum(II) complex containing aliphatic and aromatic dinitrogen ligands. Bioinorg Chem Appl. 2011:525794.
  • Sornchuer P, Namchaiw P, Kerdwong J, Charoenlap N, Mongkolsuk S, Vattanaviboon P. 2014. Copper chloride induces antioxidant gene expression but reduces ability to mediate H2O2 toxicity in Xanthomonas campestris. Microbiol. 160:458–466. doi: 10.1099/mic.0.072470-0
  • Stead MB, Agrawal A, Bowden KE, Nasir R, Mohanty BK, Meagher RB, Kushner SR. 2012. RNAsnapTM: a rapid, quantitative and inexpensive, method for isolating total RNA from bacteria. Nucleic Acids Res. 40:1–9.
  • Tergos G, Mylonakis E. 2012. Antimicrobial drug discovery: emerging strategies. Wilson M, editor. Wallingford, Oxfordshire: CABI.
  • Topală T, Bodoki A, Oprean L, Oprean R. 2014a. Expereimental techniques employed In the study of metal complexes-DNAiInteractions. Farmacia. 62:1049–1061.
  • Topală T, Bodoki A, Oprean L, Oprean R. 2014b. Bovine serum albumin interactions with metal complexes. Clujul Med. 87:215–219. doi: 10.15386/cjmed-357
  • Verma A, Schirm M, Arora SK, Thibault P, Logan SM, Ramphal R. 2006. Glycosylation of b-type flagellin of Pseudomonas aeruginosa: structural and genetic basis. J Bacteriol. 188:4395–4403. doi: 10.1128/JB.01642-05
  • Viganor L, Howe O, McCarron P, McCann M, Devereux M. 2017. The antibacterial activity of metal complexes containing 1,10-phenanthroline: potential as alternative therapeutics in the era of antibiotic resistance. Curr Top Med Chem. 17:1280–1302. doi: 10.2174/1568026616666161003143333
  • Ward H, Perron GG, MacLean RC. 2009. The cost of multiple drug resistance in Pseudomonas aeruginosa. J Evol Biol. 22:997–1003. doi: 10.1111/j.1420-9101.2009.01712.x
  • Wilton M, Charron-Mazenod L, Moore R, Lewenza S. 2016. Extracellular DNA acidifies biofilms and induces aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 60:544–553. doi: 10.1128/AAC.01650-15

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.