Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 2
680
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Molecular regulation of adhesion and biofilm formation in high and low biofilm producers of Bacillus licheniformis using RNA-Seq

, , &
Pages 143-158 | Received 26 Jul 2018, Accepted 22 Jan 2019, Published online: 18 Mar 2019

References

  • Aguilar C, Vlamakis H, Guzman A, Losick R, Kolter R. 2010. KinD is a checkpoint protein linking spore formation to extracellular-matrix production in Bacillus subtilis biofilms. Mbio. 1:e00035–e00010.
  • Astaneh SDA, Rasooli I, Gargari SLM. 2014. The role of filamentous hemagglutinin adhesin in adherence and biofilm formation in Acinetobacter baumannii ATCC19606(T). Microb. Pathog. 74:42–49. doi:10.1016/j.micpath.2014.07.007
  • Audic S, Claverie JM. 1997. The significance of digital gene expression profiles. Genome Res. 7:986–995. doi:10.1101/gr.7.10.986
  • Brooks JD, Flint SH. 2008. Biofilms in the food industry: problems and potential solutions. Int J Food Sci Technol. 43:2163–2176. doi:10.1111/j.1365-2621.2008.01839.x
  • Bucher T, Oppenheimer-Shaanan Y, Savidor A, Bloom-Ackermann Z, Kolodkin-Gal I. 2015. Disturbance of the bacterial cell wall specifically interferes with biofilm formation. Environ Microbiol Rep. 7:990–1004. doi:10.1111/1758-2229.12346
  • Burgess SA, Lindsay D, Flint SH. 2010. Thermophilic bacilli and their importance in dairy processing. Int J Food Microbiolo. 144:215–225. doi: https://doi.org/10.1016/j.ijfoodmicro.2010.09.027 doi:10.1016/j.ijfoodmicro.2010.09.027
  • Castro J, Franca A, Bradwell KR, Serrano MG, Jefferson KK, Cerca N. 2017. Comparative transcriptomic analysis of Gardnerella vaginalis biofilms vs. planktonic cultures using RNA-seq. Npj Biofilms Microbiomes. 3:3 doi:10.1038/s41522-017-0012-7
  • Chagnot C, Zorgani MA, Astruc T, Desvaux M. 2013. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol. 4:303
  • Chai Y, Beauregard PB, Vlamakis H, Losick R, Kolter R. 2012. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. Mbio. 3:e00184–e00112.
  • Charlebois A, Jacques M, Archambault M. 2016. Comparative transcriptomic analysis of Clostridium perfringens biofilms and planktonic cells. Avian Pathology. 45:593–601. doi:10.1080/03079457.2016.1189512
  • Chia N, Woese CR, Goldenfeld N. 2008. A collective mechanism for phase variation in biofilms. Proc Natl Acad Sci USA. 105:14597–14602. doi:10.1073/pnas.0804962105
  • Chin C-Y, Hara Y, Ghazali A-K, Yap S-J, Kong C, Wong Y-C, Rozali N, Koh S-F, Hoh C-C, Puthucheary SD. 2015. Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence. Bmc Genomics. 16:471 doi:10.1186/s12864-015-1692-0
  • Chun J, Bae KS. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Leeuwenhoek. 78:123–127. doi:10.1023/A:1026555830014
  • Clark ME, He Z, Redding AM, Joachimiak MP, Keasling JD, Zhou JZ, Arkin AP, Mukhopadhyay A, Fields MW. 2012. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: carbon and energy flow contribute to the distinct biofilm growth state. BMC Genomics. 13:138. doi:10.1186/1471-2164-13-138
  • Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. 2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res. 38:1767–1771. doi:10.1093/nar/gkp1137
  • Davey ME, O'Toole GA. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 64:847–867. doi:10.1128/MMBR.64.4.847-867.2000
  • de Hoon MJL, Imoto S, Nolan J, Miyano S. 2004. Open source clustering software. Bioinformatics. 20:1453–1454. doi:10.1093/bioinformatics/bth078
  • Doetsch A, Eckweiler D, Schniederjans M, Zimmermann A, Jensen V, Scharfe M, Geffers R, Haeussler S. 2012. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing. Plos One. 7:e31092. doi:10.1371/journal.pone.0031092
  • dos Ramos Almeida CJL, da Silva SM, Napoleão TH, da Silva MV, de Oliveira MBM. 2018. Biofilm formation in Bacillus cereus, B. licheniformis and B. pumilus: an alternative for survival in impacted environments. Int J Sci. 7:73–78.
  • Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci Usa. 95:14863–14868. doi:10.1073/pnas.95.25.14863
  • El Zoeiby A, Sanschagrin F, Havugimana PC, Garnier A, Levesque RC. 2001. In vitro reconstruction of the biosynthetic pathway of peptidoglycan cytoplasmic precursor in Pseudomonas aeruginosa. Fems Microbiol Lett. 201:229–235. doi:10.1111/j.1574-6968.2001.tb10761.x
  • Elsholz AKW, Wacker SA, Losick R. 2014. Self-regulation of exopolysaccharide production in Bacillus subtilis by a tyrosine kinase. Genes Dev. 28:1710–1720. doi:10.1101/gad.246397.114
  • Fagerlund A, Smith V, Rohr AK, Lindback T, Parmer MP, Andersson KK, Reubsaet L, Okstad OA. 2016. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation. Mol Microbiol. 101:471–494. doi:10.1111/mmi.13405
  • Flemming H-C, Neu TR, Wozniak DJ. 2007. The EPS matrix: the "house of biofilm cells". J Bacteriol. 189:7945–7947. doi:10.1128/JB.00858-07
  • Gantt RW, Peltier-Pain P, Singh S, Zhou M, Thorson JS. 2013. Broadening the scope of glycosyltransferase-catalyzed sugar nucleotide synthesis. Proc Natl Acad Sci USA. 110:7648–7653. doi:10.1073/pnas.1220220110
  • Gingichashvili S, Duanis-Assaf D, Shemesh M, Featherstone JDB, Feuerstein O, Steinberg D. 2017. Bacillus subtilis biofilm development - a computerized study of morphology and kinetics. Front Microbiol. 8. doi: 10.3389/fmicb.2015.01418
  • Gopal N, Hill C, Ross PR, Beresford TP, Fenelon MA, Cotter PD. 2015. The prevalence and control of Bacillus and related spore-forming bacteria in the dairy industry. Front Microbiol. 6:1418
  • Guilhen C, Charbonnel N, Parisot N, Gueguen N, Iltis A, Forestier C, Balestrino D. 2016. Transcriptional profiling of Klebsiella pneumoniae defines signatures for planktonic, sessile and biofilm-dispersed cells. Bmc Genomics. 17:237 doi:10.1186/s12864-016-2557-x
  • Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, Hayes E, Heuser J, Dodson KW, Caparon MG, Hultgren SJ. 2009. Contribution of autolysin and sortase A during Enterococcus faecalis DNA-dependent biofilm development. Infection and Immunity. 77:3626–3638. doi:10.1128/IAI.00219-09
  • Guttenplan SB, Kearns DB. 2013. Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev. 37:849–871. doi:10.1111/1574-6976.12018
  • Haggett L, Bhasin A, Srivastava P, Fujita M. 2018. A revised model for the control of fatty acid synthesis by master regulator Spo0A in Bacillus subtilis. Mol Microbiol. 108:424–442. doi:10.1111/mmi.13945
  • Hobley L, Ostrowski A, Rao FV, Bromley KM, Porter M, Prescott AR, MacPhee CE, van Aalten DMF, Stanley-Wall NR. 2015. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm. Proc Natl Acad Sci USA. 112:E5371–E5375.
  • Iraola G, Spangenberg L, Lopes Bastos B, Grana M, Vasconcelos L, Almeida A, Greif G, Robello C, Ristow P, Naya H. 2016. Transcriptome sequencing reveals wide expression reprogramming of basal and unknown genes in Leptospira biflexa biofilms. mSphere. 1:e00042–e00016.
  • Irie Y, Mattoo S, Yuk MH. 2004. The Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica. J Bacteriol. 186:5692–5698. doi:10.1128/JB.186.17.5692-5698.2004
  • Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. 2013. Life after death: the critical role of extracellular DNA in microbial biofilms. Lett Appl Microbiol. 57:467–475. doi:10.1111/lam.12134
  • Jennings MP, Ley P, Wilks KE, Maskell DJ, Poolman JT, Moxon ER. 1993. Cloning and molecular analysis of the galE gene of Neisseria meningitidis and its role in lipopolysaccharide biosynthesis. Mol Microbiol. 10:361–369. doi:10.1111/j.1365-2958.1993.tb01962.x
  • Kampf J, Stülke J. 2017. Cyclic-di-GMP signalling meets extracellular polysaccharide synthesis in Bacillus subtilis. Environ Microbiol Rep. 9:182–185. doi:10.1111/1758-2229.12530
  • Kim JK, Kwon JY, Kim SK, Han SH, Won YJ, Lee JH, Kim C-H, Fukatsu T, Lee BL. 2014. Purine biosynthesis, biofilm formation, and persistence of an insect-microbe gut symbiosis. Appl Environ Microbiol. 80:4374–4382. doi:10.1128/AEM.00739-14
  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the post-antibiotic era. Cold Spring Harb Perspect Med. 3
  • Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. doi:10.1038/nmeth.1923
  • Levesque CM, Voronejskaia E, Huang YCC, Mair RW, Ellen RP, Cvitkovitch DG. 2005. Involvement of sortase anchoring of cell wall proteins in biofilm formation by Streptococcus mutans. Infect. Immun. 73:3773–3777. doi:10.1128/IAI.73.6.3773-3777.2005
  • Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 12:323 doi:10.1186/1471-2105-12-323
  • Li J, Wang N. 2012. The gpsX gene encoding a glycosyltransferase is important for polysaccharide production and required for full virulence in Xanthomonas citri subsp. citri. BMC Microbiol. 12:31. doi:10.1186/1471-2180-12-31
  • Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J. 2009. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics. 25:1966–1967. doi:10.1093/bioinformatics/btp336
  • Luo H, Liang D-F, Bao M-Y, Sun R, Li Y-Y, Li J-Z, Wang X, Lu K-M, Bao J-K. 2017. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. Int J Oral Sci. 9:53–62. doi:10.1038/ijos.2016.58
  • Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L. 2012. Biofilm formation in milk production and processing environments; influence on milk quality and safety. Compr Rev Food Sci Food Saf. 11:133–147. doi:10.1111/j.1541-4337.2011.00183.x
  • McHugh AJ, Feehily C, Hill C, Cotter PD. 2017. Detection and enumeration of spore-forming bacteria in powdered dairy products. Front Microbiol. 8
  • Monds RD, O’Toole GA. 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol. 17:73–87. doi:10.1016/j.tim.2008.11.001
  • Moorthy S, Watnick PI. 2005. Identification of novel stage-specific genetic requirements through whole genome transcription profiling of Vibrio cholerae biofilm development. Mol Microbiol. 57:1623–1635. doi:10.1111/j.1365-2958.2005.04797.x
  • Nagayama K, Fujita K, Takashima Y, Ardin AC, Ooshima T, Matsumoto-Nakano M. 2014. Role of ABC transporter proteins in stress responses of Streptococcus mutans. Oral Health Dent Manag. 13:359–365.
  • Navarre WW, Schneewind O. 1999. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 63:174–229.
  • Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Krai A, Reidl J. 2001. Characterization of Vibrio cholerae O1 El Tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun. 69:435–445. doi:10.1128/IAI.69.1.435-445.2001
  • Nicholson TL, Conover MS, Deora R. 2012. Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica. Plos One. 7:e49166. doi:10.1371/journal.pone.0049166
  • Niederdorfer R, Besemer K, Battin TJ, Peter H. 2017. Ecological strategies and metabolic trade-offs of complex environmental biofilms. Npj Biofilms Microbiomes. 3:21 doi:10.1038/s41522-017-0029-y
  • Niou Y-K, Wu W-L, Lin L-C, Yu M-S, Shu H-Y, Yang H-H, Lin G-H. 2009. Role of galE on biofilm formation by Thermus spp. Biochem Biophy Res Commun. 390:313–318. doi:10.1016/j.bbrc.2009.09.120
  • Piatti G. 1999. Identification of immune dominant epitopes in the filamentous hemagglutinin of Bordetella pertussis. FEMS Immun Med Microbiol. 23:235–241. doi:10.1111/j.1574-695X.1999.tb01244.x
  • Prigent-Combaret C, Vidal O, Dorel C, Lejeune P. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol. 181:5993–6002.
  • Ranjit DK, Endres JL, Bayles KW. 2011. Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J Bacteriol. 193:2468–2476. doi:10.1128/JB.01545-10
  • Ren Z, Chen L, Li J, Li Y. 2016. Inhibition of Streptococcus mutans polysaccharide synthesis by molecules targeting glycosyltransferase activity. J Oral Microbiol. 8:31095. doi:10.3402/jom.v8.31095
  • Resch A, Rosenstein R, Nerz C, Gotz F. 2005. Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Enviro Microbiol. 71:2663–2676. doi:10.1128/AEM.71.5.2663-2676.2005
  • Rey MW, Ramaiya P, Nelson BA, Brody-Karpin SD, Zaretsky EJ, Tang M, de Leon A, Xiang H, Gusti V, Clausen IG, et al. 2004. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biol. 5:r77. doi:10.1186/gb-2004-5-10-r77
  • Robertson BD, Frosch M, Putten JPM. 1993. The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide. Mol Microbiol. 8:891–901. doi:10.1111/j.1365-2958.1993.tb01635.x
  • Romero-Lastra P, Sanchez MC, Ribeiro-Vidal H, Llama-Palacios A, Figuero E, Herrera D, Sanz M. 2017. Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states. Plos One. 12:e0174669. doi:10.1371/journal.pone.0174669
  • Roux D, Cywes-Bentley C, Zhang Y-F, Pons S, Konkol M, Kearns DB, Little DJ, Howell PL, Skurnik D, Pier GB. 2015. Identification of poly-N-acetylglucosamine as a major polysaccharide component of the Bacillus subtilis biofilm matrix. J Biol Chem. 290:19261–19272. doi:10.1074/jbc.M115.648709
  • Rumbo-Feal S, Gomez MJ, Gayoso C, Alvarez-Fraga L, Cabral MP, Aransay AM, Rodriguez-Ezpeleta N, Fullaondo A, Valle J, Tomas M. 2013. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. Plos One. 8(8)
  • Sadiq FA, Flint S, Li Y, Liu T, Lei Y, Sakandar HA, He G. 2017. New mechanistic insights into the motile-to-sessile switch in various bacteria with particular emphasis on Bacillus subtilis and Pseudomonas aeruginosa: a review. Biofouling. 33:306–326. doi:10.1080/08927014.2017.1304541
  • Sadiq FA, Flint S, Li Y, Ou K, Yuan L, He G. 2017. Phenotypic and genetic heterogeneity within biofilms with particular emphasis on persistence and antimicrobial tolerance. Fut Microbiol. 12:1087–1107. doi:10.2217/fmb-2017-0042
  • Sadiq FA, Flint S, Yuan L, Li Y, Liu T, He G. 2017. Propensity for biofilm formation by aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Int J Food Microbiol. 262:89–98. doi:10.1016/j.ijfoodmicro.2017.09.015
  • Sadiq FA, Li Y, Liu T, Flint S, Zhang G, He G. 2016. A RAPD based study revealing a previously unreported wide range of mesophilic and thermophilic spore formers associated with milk powders in China. Int J Food Microbiol. 217:200–208. doi:10.1016/j.ijfoodmicro.2015.10.030
  • Saldanha AJ. 2004. Java Treeview-extensible visualization of microarray data. Bioinformatics. 20:3246–3248. doi:10.1093/bioinformatics/bth349
  • Sauer K. 2003. The genomics and proteomics of biofilm formation. Genome Biol. 4:219. doi:10.1186/gb-2003-4-6-219
  • Schembri MA, Kjaergaard K, Klemm P. 2003. Global gene expression in Escherichia coli biofilms. Mol Microbiol. 48:253–267. doi:10.1046/j.1365-2958.2003.03432.x
  • Schmid J, Sieber V, Rehm B. 2015. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol. 6:496
  • Serra DO, Richter AM, Klauck G, Mika F, Hengge R. 2013. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. Mbio. 4:e00103–e00113.
  • Singh P, Brooks JF, II, Ray VA, Mandel MJ, Visick KL. 2015. CysK plays a role in biofilm formation and colonization by Vibrio fischeri. Appl Environ Microbiol. 81:5223–5234. doi:10.1128/AEM.00157-15
  • Sun Y-Y, Chi H, Sun L. 2016. Pseudomonas fluorescens filamentous hemagglutinin, an iron-regulated protein, is an important virulence factor that modulates bacterial pathogenicity. Front Microbiol. 7:1320
  • Trotonda MP, Tamber S, Memmi G, Cheung AL. 2008. MgrA represses biofilm formation in Staphylococcus aureus. Infect Immun. 76:5645–5654. doi:10.1128/IAI.00735-08
  • Valentini M, Filloux A. 2016. Biofilms and Cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 291:12547–12555. doi:10.1074/jbc.R115.711507
  • Vilain S, Pretorius JM, Theron J, Brozel VS. 2009. DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol. 75:2861–2868. doi:10.1128/AEM.01317-08
  • Vinoj G, Vaseeharan B, DavidJayaseelan B, Rajakumaran P, Ravi C. 2013. Inhibitory effects of Bacillus licheniformis (DAB1) and Pseudomonas aeruginosa (DAP1) against Vibrio parahaemolyticus isolated from Fenneropenaeus indicus. Aquacult Int. 21:1121–1135. doi:10.1007/s10499-012-9617-2
  • Vinoj G, Vaseeharan B, Thomas S, Spiers AJ, Shanthi S. 2014. Quorum-quenching activity of the AHL-lactonase from Bacillus licheniformis DAHB1 inhibits Vibrio biofilm formation in vitro and reduces shrimp intestinal colonisation and mortality. Mar Biotechnol. 16:707–715. doi:10.1007/s10126-014-9585-9
  • Vlamakis H, Aguilar C, Losick R, Kolter R. 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Gen Dev. 22:945–953. doi:10.1101/gad.1645008
  • Whiteley M, Bangera MG, Bumgarner RE, Parsek MR, Teitzel GM, Lory S, Greenberg EP. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nat. 413:860–864. doi:10.1038/35101627
  • Xu S, Yang N, Zheng S, Yan F, Jiang C, Yu Y, Guo J, Chai Y, Chen Y. 2017. The spo0A-sinI-sinR regulatory circuit plays an essential role in biofilm formation, nematicidal activities, and plant protection in Bacillus cereus AR156. MPMI. 30:603–619. doi:10.1094/MPMI-02-17-0042-R
  • Yan F, Yu Y, Gozzi K, Chen Y, Guo J-h, Chai Y. 2017. Genome-wide investigation of biofilm formation in Bacillus cereus. Appl Environ Microbiol. 83:e00561–e00517.
  • Yu Y, Yan F, He Y, Qin Y, Chen Y, Chai Y, Guo J-H. 2018. The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis. Microbiol. 164:848–862.
  • Zheng L, Abhyankar W, Ouwerling N, Dekker HL, van Veen H, van der Wel NN, Roseboom W, de Koning LJ, Brul S, de Koster CG. 2016. Bacillus subtilis spore inner membrane proteome. J Proteome Res. 15:585–594.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.