Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 2
1,579
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

Towards an absolute scale for adhesion strength of ship hull microfouling

ORCID Icon, & ORCID Icon
Pages 244-258 | Received 26 Oct 2018, Accepted 12 Mar 2019, Published online: 10 Apr 2019

References

  • Ackerman JD, Ethier CR, Allen DG, Spelt JK. 1992. Investigation of zebra mussel adhesion strength using rotating disks. J Environ Eng. 118:708–724. doi: 10.1061/(ASCE)0733-9372(1992)118:5(708)
  • Alekseenko SV, Markovich DM. 1994. Electrodiffusion diagnostics of wall shear stresses in impinging jets. J Appl Electrochem. 24:626–631. doi: 10.1007/BF00252087
  • Andersen R. 2012. A surface-cleaning device and vehicle. International Patent WO 2012/074408 A2.
  • Beltaos S, Rajaratnam N. 1974. Impinging circular turbulent jets. ASCE J Hydraul Div. 100:1313–1328.
  • Bradshaw P, Love EM. 1961. The normal impingement of a circular air jet on a flat surface. Reports and Memoranda No. 3205. London (UK).
  • Callow JA, Crawford S. A, Higgins MJ, Mulvaney P, Wetherbee R. 2000. The application of atomic force microscopy to topographical studies and force measurements on the secreted adhesive of the green alga Enteromorpha. Planta. 211:641–647. doi: 10.1007/s004250000337
  • Davidson IC, Scianni C, Hewitt C, Everett R, Holm ER, Tamburri M, Ruiz GM. 2016. Mini-review: assessing the drivers of ship biofouling management – aligning industry and biosecurity goals. Biofouling. 32:411–428. doi: 10.1080/08927014.2016.1149572
  • Finlay JA, Callow ME, Schultz MP, Swain GW, Callow JA. 2002. Adhesion strength of settled spores of the green alga Enteromorpha. Biofouling. 18:251–256. doi: 10.1080/08927010290029010
  • Ghaneeizad SM, Atkinson JF, Bennett SJ. 2015. Effect of flow confinement on the hydrodynamics of circular impinging jets: implications for erosion assessment. Environ Fluid Mech. 15:1–25. doi: 10.1007/s10652-014-9354-3
  • Giralt F, Chia C-J, Trass O. 1977. Characterization of the impingement region in a axisymmetric turbulent jet. Ind Eng Chem Fund. 16:21–28. doi: 10.1021/i160061a007
  • Hanson GJ, Cook KR. 2004. Apparatus, test procedures, and analytical methods to measure soil erodibility in situ. Appl Eng Agric. 20:455–462.
  • Hanson GJ, Robinson KM, Temple DM. 1990. Pressure and stress distributions due to a submerged impinging jet. Proceedings of the 1990 National Conference ASCE, Vol. 1. pp. 525–530. San Diego, CA, Jul 30–Aug 3, 1990.
  • Hearin J, Hunsucker KZ, Swain G, Stephens A, Gardner H, Lieberman K, Harper M. 2015. Analysis of long-term mechanical grooming on large-scale test panels coated with an antifouling and a fouling-release coating. Biofouling. 31:625–638. doi: 10.1080/08927014.2015.1081687
  • Holm ER, Haslbeck EG, Horinek AA. 2003. Evaluation of brushes for removal of fouling from fouling-release surfaces, using a hydraulic cleaning device. Biofouling. 19:297–305. doi: 10.1080/0892701031000137512
  • Hunsucker KZ, Swain GW. 2016. In situ measurements of diatom adhesion to silicone-based ship hull coatings. J Appl Phycol. 28:269–277. doi: 10.1007/s10811-015-0584-7
  • Hunsucker KZ, Vora GJ, Hunsucker JT, Gardner H, Leary DH, Kim S, Lin B, Swain G. 2018. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating. Biofouling. 7014:1–11.
  • IMO 2011. Guidelines for the control and management of ships’ biofouling to minimize the transfer of invasive aquatic species. In: Resolut MEPC207(62). London (UK); p. 1–25.
  • Jambunathan K, Lai E, Moss MA, Button BL. 1992. A review of heat transfer data for single circular jet impingement. Int J Heat Fluid Flow. 13:106–115. doi: 10.1016/0142-727X(92)90017-4
  • Kalumuck KM, Chahine GL, Frederick GS, Aley PD. 1997. Development of a DynaJet(TM) cavitating water jet cleaning tool for underwater marine fouling removal. In: Hashish M, editor. 9th Am Waterjet Conf. Dearborn, Michigan: Waterjet Technology Association; p. 541–554.
  • Kataoka K, Mizushina T. 1974. Local enhancement of the rate of heat transfer in an impinging round jet by free-stream turbulence. In: Kaigi NG, Kyōkai KK, Gakkai NK, editors. Proc 5th Int Heat Transf Conf. Tokyo (Japan); p. 305–309.
  • Larsson L, Raven HC. 2010. Governing equations. In: Paulling JR, editor. Princ Nav Archit Ser - Sh Resist Flow. Jersey City (NJ); p. 5–9.
  • Malone JA. 1980. Effects of hull foulants and cleaning/coating practices on ship performace and economics. Trans Soc Nav Archit Mar Eng. 88:75–101.
  • Montgomery DC. 2013. Design and analysis of experiments. 8th edition. Singapore: John Wiley & Sons, Inc.
  • Morrisey D, Woods CMC. 2015. In-water cleaning technologies: Review of information Prepared for Ministry for Primary Industries [Internet]. Wellington (New Zealand). Available from: http://www.mpi.govt.nz/news-and-resources/publications/
  • Munk T, Kane D, Yebra DM. 2009. The effects of corrosion and fouling on the performance of ocean-going vessels: a naval architectural perspective. In: Hellio C, Yebra D, editors. Adv Mar antifouling coatings Technol. Oxford (UK): Woodhead Publishing Limited; p. 148–176.
  • Naval Sea Systems Command. 2006. Chapter 081 – Water-borne underwater hull cleaning of Navy ships. In: Nav Ship’s Tech Man. Washington DC.
  • Noordstrand AM, Cornelis Petrus Maria DV. 2013. Cleaning head for cleaning a surface, device comprising such cleaning head, and method of cleaning, International Patent WO 2013/154426 A1.
  • Oliveira D, Granhag L. 2016. Matching forces applied in underwater hull cleaning with adhesion strength of marine organisms. JMSE. 4:66–78. doi: 10.3390/jmse4040066
  • Phares DJ, Smedley GT, Flagan RC. 2000. The wall shear stress produced by the normal impingement of a jet on a flat surface. J Fluid Mech. 418:351–375. doi: 10.1017/S002211200000121X
  • Poreh M, Tsuei YG, Cermak JE. 1967. Investigation of a turbulent radial wall jet. J Appl Mech. 34:457–463. doi: 10.1115/1.3607705
  • Roache PJ. 1994. Perspective: a method for uniform reporting of grid refinement studies. J Fluids Eng. 116:405–413. doi: 10.1115/1.2910291
  • Schiff K, Diehl D, Valkirs A. 2004. Copper emissions from antifouling paint on recreational vessels. Mar Pollut Bull. 48:371–377. doi: 10.1016/j.marpolbul.2003.08.016
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi: 10.1080/08927014.2010.542809
  • Schultz MP, Finlay JA, Callow ME, Callow JA. 2000. A turbulent channel flow apparatus for the determination of the adhesion strength of microfouling organisms. Biofouling. 15:243–251. doi: 10.1080/08927010009386315
  • Schultz MP, Finlay JA, Callow ME, Callow JA. 2003. Three models to relate detachment of low form fouling at laboratory and ship scale. Biofouling. 19 Suppl:17–26.
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi: 10.1080/08927010701461974
  • Shademan M, Balachandar R, Barron RM. 2013. CFD analysis of the effect of nozzle stand-off distance on turbulent impinging jets. Can J Civ Eng. 40:603–612. doi: 10.1139/cjce-2012-0199
  • Shademan M, Balachandar R, Roussinova V, Barron R. 2016. Round impinging jets with relatively large stand-off distance. Phys Fluids. 28:075107. doi: 10.1063/1.4955167
  • Swain GW, Schultz MP. 1996. The testing and evaluation of non-toxic antifouling coatings. Biofouling. 10:187–197. doi: 10.1080/08927019609386279
  • Tribou M, Swain G. 2017. The effects of grooming on a copper ablative coating: a six year study. Biofouling. 33:494–504. doi: 10.1080/08927014.2017.1328596
  • Tribou M, Swain GW. 2015. Grooming using rotating brushes as a proactive method to control ship hull fouling. Biofouling. 31:309–319. doi: 10.1080/08927014.2015.1041021
  • Wu W, Banyassady R, Piomelli U. 2016. Large-eddy simulation of impinging jets on smooth and rough surfaces. J Turbul. 17:847–869. doi: 10.1080/14685248.2016.1181761
  • Xu G, Antonia RA. 2002. Effect of initial conditions on the temperature field of a turbulent round free jet. Int Commun Heat Mass Transf. 29:1057–1068. doi: 10.1016/S0735-1933(02)00434-7
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology - Past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coatings. 50:75–104. doi: 10.1016/j.porgcoat.2003.06.001