Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 7
560
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Antimicrobial and antifouling polymeric coating mitigates persistence of Pseudomonas aeruginosa biofilm

, & ORCID Icon
Pages 785-795 | Received 28 May 2019, Accepted 20 Aug 2019, Published online: 06 Sep 2019

References

  • ASTM International. 2012. E2562-12: standard test method for quantification of Pseudomonas aeruginosa biofilm grown with high shear and continuous flow using CDC biofilm reactor. West Conshohocken (PA): ASTM International.
  • Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, et al. 2017. Critical review on biofilm methods. Crit Rev Microbiol. 43:313–351. doi: 10.1080/1040841X.2016.1208146
  • Banerjee I, Pangule RC, Kane RS. 2011. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater Weinheim. 23:690–718. doi: 10.1002/adma.201001215
  • Bastarrachea LJ, Denis-Rohr A, Goddard JM. 2015. Antimicrobial food equipment coatings: applications and challenges. Annu Rev Food Sci Technol. 6:97–118. doi: 10.1146/annurev-food-022814-015453
  • Bastarrachea LJ, Goddard JM. 2015. Antimicrobial coatings with dual cationic and N-halamine character: characterization and biocidal efficacy. J Agric Food Chem. 63:4243–4251. doi: 10.1021/acs.jafc.5b00445
  • Bastarrachea LJ, Goddard JM. 2016. Self-healing antimicrobial polymer coating with efficacy in the presence of organic matter. Appl Surf Sci. 378:479–488. doi: 10.1016/j.apsusc.2016.03.198
  • Bastarrachea LJ, McLandsborough LA, Peleg M, Goddard JM. 2014. Antimicrobial N-halamine modified polyethylene: characterization, biocidal efficacy, regeneration, and stability. J Food Sci. 79:E887–E897. doi: 10.1111/1750-3841.12455
  • Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F. 2011. Resistance of bacterial biofilms to disinfectants: a review. Biofouling. 27:1017–1032. doi: 10.1080/08927014.2011.626899
  • Buzby JC, Wells HF, Hyman J. 2014. The estimated amount, value, and calories of postharvest food losses at the retail and consumer levels in the United States. Washington (DC): Department of Agriculture, Economic Research Service (US). EIB 121.
  • Callow ME, Callow JA. 2002. Marine biofouling: a sticky problem. Biologist. 49:1–5.
  • Cerkez I, Kocer H, Worley S, Broughton R, Huang T. 2016. Antimicrobial functionalization of poly (ethylene terphthalate) fabrics with waterborne N-halamine epoxides. J Appl Polym Sci. 133:43088-1–43088-6. doi: 10.1002/app.43088
  • Chen X, Stewart PS. 1996. Chlorine penetration into artificial biofilm is limited by a reaction-diffusion interaction. Environ Sci Technol. 30:2078–2983. doi: 10.1021/es9509184
  • Chen Y, Thayumanavan S. 2009. Amphiphilicity in homopolymer surfaces reduces nonspecific protein adsorption. Langumuir. 25:13795–13799. doi: 10.1021/la901692a
  • Chmielewski RAN, Frank JF. 2003. Biofilm formation and control in food processing facilities. Comp Rev Food Sci Food Safety. 2:22–32. doi: 10.1111/j.1541-4337.2003.tb00012.x
  • Cossu A, Si Y, Sun G, Nitin N. 2017. Antibiofilim effect of poly (vinyl alcholol-co-ethylene) halamine film against Listeria innocua and Escherichia coli O157:H7. Appl Environ Microb. 83:e00975-17. doi: 10.1128/AEM.00975-17
  • Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. 2016. New weapons to fight old enemies: novel strategies for the (bio) control of bacterial biofilms in the food industry. Front Microbiol. 7:1641-1–1641-21.
  • Damodaran VB, Murthy NS. 2016. Bio-inspired strategies for designing antifouling biomaterials. Biomat Res. 20:1–18. doi: 10.1186/s40824-016-0064-4
  • de Souza EL, Meira QGS, de Medeiros Barbosa I, Athayde A, da Conceição ML, de Siqueira Júnior JP. 2014. Biofilm formation by Staphylococcus aureus from food contact surfaces in a meat-based broth and sensitivity to sanitizers. Braz J Microbiol. 45:67–75. doi: 10.1590/S1517-83822014000100010
  • Demir B, Cerkez I, Worley S, Broughton R, Huang TS. 2015. N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Appl Mater Interfaces. 7:1752–1757. doi: 10.1021/am507329m
  • Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerging Infect Dis. 8:881–890. doi: 10.3201/eid0809.020063
  • Ekblad T, Bergström G, Ederth T, Conlan SL, Mutton R, Clare AS, Wang S, Liu Y, Zhao Q, D’Souza F, et al. 2008. Poly (ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments. Biomacromolecules. 9:2775–2783. doi: 10.1021/bm800547m
  • Emoto K, Van Alstine JM, Harris JM. 1998. Stability of poly (ethylene glycol) graft coatings. Langmuir. 14:2722–2729. doi: 10.1021/la971010p
  • FAO, IFAD, UNICEF, WFP, WHO. 2019. The state of food security and nutrition in the world 2019. Safeguarding against economic slowdowns and downturns. Rome (Italy): FAO.
  • Feng S, Wang Q, Gao Y, Huang Y, Qing FL. 2009. Synthesis and characterization of a novel amphiphilic copolymer capable as anti-biofouling coating material. J Appl Polym Sci. 114:2071–2078. doi: 10.1002/app.30779
  • Fischer ER, Hansen BT, Nair V, Hoyt FH, Dorward DW. 2012. Scanning electron microscopy. Curr Protoc Microbiol. Chapter 2: Unit 2B.2.
  • Food and Agriculture Organization of the United Nations (FAO). 2011. Global food losses and food waste: extent, causes and prevention. Rome (Italy): FAO.
  • Ghafoor A, Hay ID, Rehm B. 2011. Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture. Appl Environ Microbiol. 77:5238–5246. doi: 10.1128/AEM.00637-11
  • Hou JP, Veeregowda DH, van de Belt-Gritter B, Busscher HJ, van der Mei HC. 2018. Extracellular polymeric matrix production and relaxation under fluid shear and mechanical pressure in Staphylococcus aureus biofilms. Appl Environ Microbiol. 84:e01516-17. doi: 10.1128/AEM.01516-17
  • Huang K, McLandsborough LA, Goddard JM. 2016. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel. Biofouling. 32:523–533. doi: 10.1080/08927014.2016.1160284
  • Hui F, Debiemme-Chouvy C. 2013. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications. Biomacromolecules. 14:585–601. doi: 10.1021/bm301980q
  • Intveld JH. 1996. Microbial and biohemical spoilage of foods: an overview. Int J Food Microbiol. 33:1–18.
  • Karimi MR, Hasani A, Khosroshahian S. 2016. Efficacy of antimicrobial photodynamic therapy as an adjunctive to mechanical debridement in the treatment of peri-implant diseases: a randomized controlled clinical trial. J Lasers Med Sci. 7:139–145. doi: 10.15171/jlms.2016.24
  • Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. 2003. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol. 48:1511–1524. doi: 10.1046/j.1365-2958.2003.03525.x
  • Krishnan S, Ayothi R, Hexemer A, Finlay JA, Sohn KE, Perry R, Ober CK, Kramer EJ, Callow ME, Callow JA, et al. 2006. Anti-biofouling properties of comb-like block copolymers with amphiphilic side chains. Langmuir. 22:5075–5076. doi: 10.1021/la052978l
  • Krishnan S, Weinman CJ, Ober CK. 2008. Advances in polymers for anti-biofouling surfaces. J Mater Chem. 18:3405–3413. doi: 10.1039/b801491d
  • Leckband D, Sheth S, Halperin A. 1999. Grafted poly (ethylene oxide) brushes as nonfouling surface coatings. J Biomater Sci Polym Ed. 10:1125–1147. doi: 10.1163/156856299X00720
  • Liu Y, Leng C, Chisholm B, Stafslien S, Majumdar P, Chen Z. 2013. Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications. Langmuir. 29:2897–2905. doi: 10.1021/la304571u
  • Majumdar P, Lee E, Patel N, Ward K, Stafslien SJ, Daniels J, Chisholm BJ, Boudjouk P, Callow ME, Callow JA. 2008. Combinatorial materials researchh applied to the development of new surface coatings IX: an investigation of novel antifouling/fouling-release coatings containing quaternary ammonium salt groups. Biofouliing. 24:185–200. doi: 10.1080/08927010801894660
  • Marchand S, De Block J, De Jonghe V, Coorevits A, Heyndrickx M, Herman L. 2012. Biofilm formation in milk production and processing environments: influence on milk quality and safety. Compr Rev Food Sci Food Saf. 11:133–147. doi: 10.1111/j.1541-4337.2011.00183.x
  • Merian T, Goddard JM. 2012. Advances in nonfouling materials: perspectives for the food industry. J Agric Food Chem. 60:2943–2957. doi: 10.1021/jf204741p
  • Moretro T, Langsrud S. 2017. Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Compr Rev Food Sci Food Saf. 16:1022–1041. doi: 10.1111/1541-4337.12283
  • Myszka K, Czaczyk K. 2011. Bacterial biofilms on food contact surfaces–a review. Pol J Food Nutr Sci. 61:173–180. doi: 10.2478/v10222-011-0018-4
  • Nablo BJ, Rothrock AR, Schoenfisch MH. 2005. Nitric oxide-releasing sol–gels as antibacterial coatings for orthopedic implants. Biomater. 26:917–924. doi: 10.1016/j.biomaterials.2004.03.031
  • Nie FQ, Xu ZK, Huang XJ, Ye P, Wu J. 2003. Acrylonitrile-based copolymer membranes containing reactive groups: surface modification by the immobilization of poly(ethylene glycol) for improving antifouling property and biocompatibility. Langmuir. 19:9889–9895. doi: 10.1021/la035315h
  • Nir S, Reches M. 2016. Bio-inspired antifouling approaches: the quest towards non-toxic and non-biocidal materials. Curr Opin Biotechnol. 39:48–55. doi: 10.1016/j.copbio.2015.12.012
  • Olszewska MA, Kocot AM, Stanowicka A, Laniewska-Trokenheim L. 2016. Biofilm formation by Pseudomonas aeruginosa and disinfectant susceptibility of planktonic and biofilm cells. Czech J Food Sci. 34:204–210.
  • O'Toole GA. 2000. On again, off again: Biofilm development in Pseudomonas aeruginosa. Abstracts of Papers of the American Chemical Society. 220:U226–U227.
  • Paik MY, Krishnan S, You F, Li X, Hexemer A, Ando Y, Kang SH, Fischer DA, Kramer EJ, Ober CK. 2007. Surface organization, light-driven surface changes, and stability of semifluorinated azobenzene polymers. Langmuir. 23:5110–5119. doi: 10.1021/la0634138
  • Phillips CA. 2016. Bacterial biofilms in food processing environments: a review of recent developments in chemical and biological control. Int J Food Sci Technol. 51:1731–1743. doi: 10.1111/ijfs.13159
  • Rasamiravaka T, Labtani Q, Duez P, El Jaziri M. 2015. The formation of biofilms by pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. Biomed Res Int. 2015:759348-1–759348-17. doi: 10.1155/2015/759348
  • Roy R, Tiwari M, Donelli G, Tiwari V. 2018. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 9:522–554. doi: 10.1080/21505594.2017.1313372
  • Salwiczek M, Qu Y, Gardiner J, Strugnell RA, Lithgow T, McLean KM, Thissen H. 2014. Emerging rules for effective antimicrobial coatings. Trends Biotechnol. 32:82–90. doi: 10.1016/j.tibtech.2013.09.008
  • Speranza B, Corbo MR. 2017. The impact of biofilms on food spoilage. In: Bevilacqua A, Corbo MR, Sinigaglia M, editors. The microbiological quality of food: foodborne spoilers. Oxford (UK): Elsevier; p. 259–282.
  • Van Houdt R, Michiels CW. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol. 109:1117–1131. doi: 10.1111/j.1365-2672.2010.04756.x
  • Vital-Lopez FG, Reifman J, Wallqvist A. 2015. Biofilm formation mechanisms of Pseudomonas aeruginosa predicted via genome-scale kinetic models of bacterial metabolism. PLOS Comput Biol. 11:e1004452. doi: 10.1371/journal.pcbi.1004452
  • Vuotto C, Donelli G. 2014. Field emission scanning electron microscopy of biofilm-growing bacteria involved in nosocomial infections. Methods Mol Biol. 1147:73–84. doi: 10.1007/978-1-4939-0467-9
  • Wang L, Keatch R, Zhao Q, Wright JA, Bryant CE, Redmann AL, Terentjev EM. 2018. Influence of type I fimbriae and fluid shear stress on bacterial behavior and multicellular architecture of early Escherichia coli biofilms at single-cell resolution. Appl Environ Microbiol. 84:e02343-17. https://doi.org/10.1128/AEM.02343-17.
  • Ward WK. 2008. A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol. 2:768–777. doi: 10.1177/193229680800200504
  • Wisniewski N, Reichert M. 2000. Methods for reducing biosensor membrane biofouling. Colloids Surf B Biointerfaces. 18:197–219. doi: 10.1016/S0927-7765(99)00148-4
  • Yan J, Fei C, Mao S, Moreau A, Wingreen NS, Košmrlj A, Stone HA, Bassler BL. 2019. Mechanical instability and interfacial energy drive biofilm morphogenesis. Elife. 8:e43920. doi: 10.7554/eLife.43920
  • Yuan Y, Hays MP, Hardwidge PR, Kim J. 2017. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 7:14254–14261. doi: 10.1039/C7RA01571B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.