Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 8
552
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Multispecies biofilm formation by the contaminating microbiota in raw milk

, , , , &
Pages 819-831 | Received 29 Apr 2019, Accepted 03 Sep 2019, Published online: 26 Sep 2019

References

  • Al-Adawi AS, Gaylarde CC, Sunner J, Beech IB. 2016. Transfer of bacteria between stainless steel and chicken meat: a CLSM and DGGE study of biofilms. AIMS Microbiol. 2:340–358. doi:10.3934/microbiol.2016.3.340
  • Alvarez-Ordóñez A, Coughlan LM, Briandet R, Cotter PD. 2019. Biofilms in food processing environments: challenges and opportunities. Annu Rev Food Sci Technol. 10:173–195. doi:10.1146/annurev-food-032818-121805
  • Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. 2014. Jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 15:293. doi:10.1186/1471-2105-15-293
  • Bharathi P, Bhowmick P, Shekar M, Karunasagar I. 2011. Biofilm formation by pure and mixed culture of Lactobacillus isolates on polystyrene surface in varying nutrient conditions. Biotechnol Bioinforma Bioeng. 1:93–98.
  • Brasil. 2018. Normative Ruling n° 76 and n° 77, of November 26, 2018. Technical regulation on the collection of refrigerated raw milk and its bulk transport. Official Gazette of the Federative Republic of Brazil, Brasilia, DF, Ministry of Agriculture, Livestock and Supply. p. 9–13.
  • Brooks JD, Flint SH. 2008. Biofilms in the food industry: problems and potential solutions. Int J Food Sci Technol. 43:2163–2176. doi:10.1111/j.1365-2621.2008.01839.x
  • Buckling A, Brockhurst MA. 2008. Kin selection and the evolution of virulence. Heredity (Edinb). 100:484–488. doi:10.1038/sj.hdy.6801093
  • Burmølle M, Ren D, Bjarnsholt T, Sørensen SJ. 2014. Interactions in multispecies biofilms: do they actually matter?. Trends Microbiol. 22:84–91. doi:10.1016/j.tim.2013.12.004
  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 108:4516–4522. doi:10.1073/pnas.1000080107
  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, et al. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme J. 6:1621–1624. doi:10.1038/ismej.2012.8
  • Cappitelli F, Polo A, Villa F. 2014. Biofilm formation in food processing environments is still poorly understood and controlled. Food Eng Rev. 6:29–42. doi:10.1007/s12393-014-9077-8
  • Cherif-Antar A, Moussa–Boudjemâa B, Didouh N, Medjahdi K, Mayo B, Flórez AB. 2016. Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant. Dairy Sci & Technol. 96:27–38. doi:10.1007/s13594-015-0235-4
  • Cleto S, Matos S, Kluskens L, Vieira MJ. 2012. Characterization of contaminants from a sanitized milk processing plant. PLoS One. 7:e40189 doi:10.1371/journal.pone.0040189
  • Cole JK, Hutchison JR, Renslow RS, Kim YM, Chrisler WB, Engelmann HE, Dohnalkova AC, Hu D, Metz TO, Fredrickson JK, et al. 2014. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions. Front Microbiol. 5:109.
  • Coyte KZ, Tabuteau H, Gaffney EA, Foster KR, Durham WM. 2017. Microbial competition in porous environments can select against rapid biofilm growth. Proc Natl Acad Sci Usa. 114:e161–e170. doi:10.1073/pnas.1525228113
  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194–2200. doi:10.1093/bioinformatics/btr381
  • Elias S, Banin E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 36:990–1004. doi:10.1111/j.1574-6976.2012.00325.x
  • Fabres-Klein MH, Santos MJC, Klein RC, Souza GN, Ribon A. 2015. An association between milk and slime increases biofilm production by bovine Staphylococcus aureus. BMC Vet Res. 11:3. doi:10.1186/s12917-015-0319-7
  • Faille C, Bénézech T, Midelet-Bourdin G, Lequette Y, Clarisse M, Ronse G, Ronse A, Slomianny C. 2014. Sporulation of Bacillus spp. within biofilms: a potential source of contamination in food processing environments. Food Microbiol. 40:64–74. doi:10.1016/j.fm.2013.12.004
  • Filipello V, Di Ciccio PA, Colagiorgi A, Tilola M, Romanò A, Vitale N, Losio MN, Luini M, Zanardi E, Ghidini S, et al. 2019. Molecular characterisation and biofilm production in Staphylococcus aureus isolates from the dairy production chain in Northern Italy. Int Dairy J. 91:110–118. doi:10.1016/j.idairyj.2018.10.002
  • Filoche SK, Zhu M, Wu CD. 2004. In situ biofilm formation by multi-species oral bacteria under flowing and anaerobic conditions. J Dent Res. 83:802–806. doi:10.1177/154405910408301013
  • Flint S, Palmer J, Bloemen K, Brooks J, Crawford R. 2001. The growth of Bacillus stearothermophilus on stainless steel. J Appl Microbiol. 90:151–157. doi:10.1046/j.1365-2672.2001.01215.x
  • Foster KR, Bell T. 2012. Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol. 22:1845–1850. doi:10.1016/j.cub.2012.08.005
  • Hammer Ø, Harper DAT, Ryan PD. 2001. PAST - Palaeontological STatistics, ver. 1.89. Palae. 4:1–9.
  • Hantsis-Zacharov E, Halpern M. 2007. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl Environ Microbiol. 73:7162–7168. doi:10.1128/AEM.00866-07
  • Jagmann N, Henke SF, Philipp B. 2015. Cells of Escherichia coli are protected against severe chemical stress by co-habiting cell aggregates formed by Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 99:8285–8294.
  • Jahid IK, Han N, Zhang CY, Ha SD. 2015. Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma. Food Microbiol. 46:383–394. doi:10.1016/j.fm.2014.08.003
  • Latorre AA, Van Kessel JS, Karns JS, Zurakowski MJ, Pradhan AK, Boor KJ, Jayarao BM, Houser BA, Daugherty CS, Schukken YH. 2010. Biofilm in milking equipment on a dairy farm as a potential source of bulk tank milk contamination with Listeria monocytogenes. J Dairy Sci. 93:2792–2802. doi:10.3168/jds.2009-2717
  • Lehman SM, Donlan RM. 2015. Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother. 59:1127–1137. doi:10.1128/AAC.03786-14
  • Lopes SP, Ceri H, Azevedo NF, Pereira MO. 2012. Antibiotic resistance of mixed biofilms in cystic fibrosis: impact of emerging microorganisms on treatment of infection. Int J Antimicrob Agents. 40:260–263. doi:10.1016/j.ijantimicag.2012.04.020
  • Machado SG, Silva FL, Bazzolli DMS, Heyndrickx M, Costa PMA, Vanetti M. 2015. Pseudomonas spp. and Serratia liquefaciens as predominant spoilers in cold raw milk. J Food Sci. 80:M1842–M1849. doi:10.1111/1750-3841.12957
  • Machado SG, Baglinière F, Marchand S, Coillie EV, Vanetti MCD, Block J, Heyndrickx M. 2017. The biodiversity of the microbiota producing heat-resistant enzymes responsible for spoilage in processed bovine milk and dairy products. Front Microbiol. 8:302.
  • Majed R, Faille C, Kallassy M, Gohar M. 2016. Bacillus cereus Biofilms-Same, Only Different. Front Microbiol. 7:1054
  • Marchand S, Heylen K, Messens W, Coudijzer K, Vos P, Dewettinck K, Herman L, Block J, Heyndrickx M. 2009. Seasonal influence on heat-resistant proteolytic capacity of Pseudomonas lundensis and Pseudomonas fragi, predominant milk spoilers isolated from Belgian raw milk samples. Environ Microbiol. 11:467–482. doi:10.1111/j.1462-2920.2008.01785.x
  • Marcy JA, Pruett WP. 2001. Proteolytic microorganisms. In: Downs FP, Ito K, editors. Compendium of methods for the microbiological examination of foods. 4th ed. Washington, D.C.: APHA; p. 175–181.
  • Mittelman MW. 1998. Structure and functional characteristics of bacterial biofilms in fluid processing operations. J Dairy Science. 81:2760–2764. doi:10.3168/jds.S0022-0302(98)75833-3
  • Molva C, Sudagidan M, Okuklu B. 2009. Extracellular enzyme production and enterotoxigenic gene profiles of Bacillus cereus and Bacillus thuringiensis strains isolated from cheese in Turkey. Food Control. 20:829–834. doi:10.1016/j.foodcont.2008.10.016
  • Moons P, Michiels CW, Aertsen A. 2009. Bacterial interactions in biofilms. Crit Rev Microbiol. 35:157–168. doi:10.1080/10408410902809431
  • Nörnberg M, Mentges ML, Silveira ST, Tondo EĆ, Brandelli A. 2011. A psychrotrophic Burkholderia cepacia strain isolated from refrigerated raw milk showing proteolytic activity and adhesion to stainless steel. J Dairy Res. 78:257–262. doi:10.1017/S002202991100015X
  • Oliver SP, Boor KJ, Murphy SC, Murinda SE. 2009. Food safety hazards associated with consumption of raw milk. Foodborne Pathog Dis. 6:793–806. doi:10.1089/fpd.2009.0302
  • Oulahal-Lagsir N, Martial-Gros A, Bonneau M, Blum LJ. 2003. “Escherichia coli-milk” biofilm removal from stainless steel surfaces: synergism between ultrasonic waves and enzymes. Biofouling. 19:159–168.
  • Palmer RJ, Kazmerzak K, Hansen MC, Kolenbrander PE. 2001. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun. 69:5794–5804. doi:10.1128/IAI.69.9.5794-5804.2001
  • Palmer JS, Flint SH, Schmid J, Brooks JD. 2010. The role of surface charge and hydrophobicity in the attachment of Anoxybacillus flavithermus isolated from milk powder. J Ind Microbiol Biotechnol. 37:1111–1119. doi:10.1007/s10295-010-0758-x
  • Parijs I, Steenackers HP. 2018. Competitive inter-species interactions underlie the increased antimicrobial tolerance in multispecies brewery biofilms. ISME J. 12:2061–2075. doi:10.1038/s41396-018-0146-5
  • Parkar SG, Flint SH, Palmer JS, Brooks JD. 2001. Factors influencing attachment of thermophilic bacilli to stainless steel. J Appl Microbiol. 90:901–908. doi:10.1046/j.1365-2672.2001.01323.x
  • Ponce ADR, Martins ML, Araujo EF, Mantovani HC, Vanetti M. 2012. AiiA quorum-sensing quenching controls proteolytic activity and biofilm formation by Enterobacter cloacae. Curr Microbiol. 65:758–763. doi:10.1007/s00284-012-0226-0
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41:D590–D596.
  • Raats D, Offek M, Minz D, Halpern M. 2011. Molecular analysis of bacterial communities in raw cow milk and the impact of refrigeration on its structure and dynamics. Food Microbiol. 28:465–471. doi:10.1016/j.fm.2010.10.009
  • Rao D, Webb JS, Kjelleberg S. 2006. Microbial colonization and competition on the marine alga Ulva australis. Appl Environ Microbiol. 72:5547–5555. doi:10.1128/AEM.00449-06
  • Rendueles O, Ghigo JM. 2015. Mechanisms of competition in biofilm communities. Microbiol Spectr. 3:1–18.
  • Rickard AH, McBain AJ, Ledder RG, Handley PS, Gilbert P. 2003. Coaggregation between freshwater bacteria within biofilm and planktonic communities. FEMS Microbiol Lett. 220:133–140. doi:10.1016/S0378-1097(03)00094-6
  • Røder HL, Sørensen SJ, Burmølle M. 2016. Studying bacterial multispecies biofilms: where to start? Trends Microbiol. 24:503–513. doi:10.1016/j.tim.2016.02.019
  • Ryu JH, Beuchat LR. 2005. Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and curli production on its resistance to chlorine. Appl Environ Microbiol. 71:247–254. doi:10.1128/AEM.71.1.247-254.2005
  • Salta M, Wharton JA, Dennington SP, Stoodley P, Stokes KR. 2013. Anti-biofilm performance of three natural products against initial bacterial attachment. Int J Mol Sci. 14:21757–21780. doi:10.3390/ijms141121757
  • Samaržija D, Zamberlin Š, Pogačić T. 2012. Psychrotrophic bacteria and milk and dairy products quality. Mljekarstvo. 62:77–95.
  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 75:7537–7541. doi:10.1128/AEM.01541-09
  • Sharma M, Anand SK. 2002. Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol. 19:627–636. doi:10.1006/fmic.2002.0472
  • Simões M, Simões LC, Vieira MJ. 2009. Species association increases biofilm resistance to chemical and mechanical treatments. Water Res. 43:229–237.
  • Sørhaug T, Stepaniak L. 1997. Psychrotrophs and their enzymes in milk and dairy products: Quality aspects. Trends Food Sci Technol. 8:35–41. doi:10.1016/S0924-2244(97)01006-6
  • Teh KH, Lindsay D, Palmer J, Andrewes P, Bremer P, Flint S. 2014. Proteolysis in ultra-heat-treated skim milk after exposure to multispecies biofilms under conditions modelling a milk tanker. Int J Dairy Technol. 67:176–181. doi:10.1111/1471-0307.12114
  • Thiele JH, Chartrain M, Zeikus JG. 1988. Control of interspecies electron flow during anaerobic digestion: role of floc formation in syntrophic methanogenesis. Appl Environ Microbiol. 54:10–19.
  • Viana ES, Campos MEM, Ponce AR, Mantovani HC, Vanetti MCD. 2009. Biofilm formation and acyl homoserine lactone production in Hafnia alvei isolated from raw milk. Biol Res. 42:427–436.
  • Vithanage NR, Bhongir J, Jadhav SR, Ranadheera CS, Palombo EA, Yeager TR, Datta N. 2017. Species-level discrimination of psychrotrophic pathogenic and spoilage gram-negative raw milk isolates using a combined MALDI-TOF MS proteomics-bioinformatics-based approach. J Proteome Res. 16:2188–2203. doi:10.1021/acs.jproteome.6b01046
  • Vlková H, Babák V, Seydlová R, Pavlík I, Schlegelova J. 2008. Biofilms and hygiene on dairy farms and in the dairy industry: sanitation chemical products and their effectiveness on biofilms - a review. Czech J Food Sci. 26:309–323. doi:10.17221/1128-CJFS
  • Wang R, Neoh KG, Shi Z, Kang ET, Tambyah PA, Chiong E. 2012. Inhibition of Escherichia coli and Proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnol Bioeng. 109:336–345. doi:10.1002/bit.23342
  • Wu MY, Sendamangalam V, Xue Z, Seo Y. 2012. The influence of biofilm structure and total interaction energy on Escherichia coli retention by Pseudomonas aeruginosa biofilm. Biofouling. 28:1119–1128. doi:10.1080/08927014.2012.732070
  • Xu D, Jia R, Li Y, Gu T. 2017. Advances in the treatment of problematic industrial biofilms. World J Microbiol Biotechnol. 33:97. doi:10.1007/s11274-016-2203-4
  • Yuan L, Burmølle M, Sadiq FA, Wang N, He G. 2018. Interspecies variation in biofilm-forming capacity of psychrotrophic bacterial isolates from Chinese raw milk. Food Control. 91:47–57. doi:10.1016/j.foodcont.2018.03.026
  • Yuan L, Hansen MF, Røder HL, Wang N, Burmølle M, He G. 2019. Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Crit Rev Food Sci Nutr. 1–17. DOI: doi:10.1080/10408398.2019.1632790

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.