Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 35, 2019 - Issue 8
406
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

In vitro and in vivo efficacy of Caenorhabditis elegans recombinant antimicrobial protein against Gram-negative bacteria

&
Pages 900-921 | Received 17 Apr 2019, Accepted 27 Sep 2019, Published online: 16 Oct 2019

References

  • Aballay A, Yorgey P, Ausubel FM. 2000. Salmonella Typhi proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol. 10:1539–1542. doi:10.1016/S0960-9822(00)00830-7
  • Akkas SB, Severcan M, Yilmaz O, Severcan F. 2007. Effects of lipoic acid supplementation on rat brain tissue: an FTIR spectroscopic and neural network study. Food Chem. 105:1281–1288. doi:10.1016/j.foodchem.2007.03.015
  • Aksoy D, Şen E. 2015. Investigation of pathogenic phenotypes and virulence determinants of food-borne Salmonella enterica strains in Caenorhabditis elegans animal model. Mikrobiyol Bul. 49:513–524. doi:10.5578/mb.9925
  • Alper S, McBride SJ, Lackford B, Freedman JH, Schwartz DA. 2007. Specificity and complexity of the Caenorhabditis elegans innate immune response. Molecular Cell biol. 27:5544–5553. doi:10.1128/MCB.02070-06
  • Bae W, Xia B, Inouye M, Severinov K. 2000. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci. 97:7784–7789. doi:10.1073/pnas.97.14.7784.
  • Balasubramaniam B, Vinitha T, Deepika S, JebaMercy G, VenkataKrishna LM, Balamurugan K. 2019. Analysis of Caenorhabditis elegans phosphoproteome reveals the involvement of a molecular chaperone, HSP-90 protein during Salmonella enterica Serovar Typhi infection. Int J Biol Macromol. 137:620–646. doi:10.1016/j.ijbiomac.2019.06.085
  • Bhagwat AA, Jun W, Liu L, Kannan P, Dharne M, Pheh B, Tall BD, Kothary MH, Gross KC, Angle S, et al. 2009. Osmoregulated periplasmic glucans of Salmonella enterica serovar Typhi are required for optimal virulence in mice. Microbiology. 155:229–237. doi:10.1099/mic.0.023747-0
  • Bogaerts A, Beets I, Schoofs L, Verleyen P. 2010. Antimicrobial peptides in Caenorhabditis elegans. Invertebr Surv J. 7:45–52.
  • Borukhov S, Polyakov A, Nikiforov V, Goldfarb A. 1992. GreA protein: a transcription elongation factor from Escherichia coli. Proc Natl Acad Sci USA. 89:8899–8902. doi:10.1073/pnas.89.19.8899.
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MCL. 2011. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 7:1431–1440. doi:10.1016/j.actbio.2010.11.005
  • Cifuente JO, Comino N, Madariaga-Marcos J, López-Fernández S, García-Alija M, Agirre J, Albesa-Jové D, Guerin ME. 2016. Structural basis of glycogen biosynthesis regulation in bacteria. Structure. 24:1613–1622. doi:10.1016/j.str.2016.06.023.
  • Desalermos A, Muhammed M, Glavis-Bloom J, Mylonakis E. 2011. Using Caenorhabditis elegans for antimicrobial drug discovery. Expert Opin Drug Discovery. 6:645–652. doi:10.1517/17460441.2011.573781
  • Dharmaprakash A, Mutt E, Jaleel A, Ramanathan S, Thomas S. 2014. Proteome profile of a pandemic Vibrio parahaemolyticus SC192 strain in the planktonic and biofilm condition. Biofouling. 30:729–739. doi:10.1080/08927014.2014.916696.
  • Dierking K, Yang W, Schulenburg H. 2016. Antimicrobial effectors in the nematode Caenorhabditis elegans: an outgroup to the Arthropoda. Phil Trans R Soc B. 371:20150299. doi:10.1098/rstb.2015.0299.
  • Ewbank JJ, Zugasti O. 2011. C. elegans: model host and tool for antimicrobial drug discovery. Dis Models Mech. 4:300–304. doi:10.1242/dmm.006684
  • Froy O. 2005. Microreview: regulation of mammalian defensin expression by Toll‐like receptor‐dependent and independent signalling pathways. Cell Microbiol. 7:1387–1397. doi:10.1111/j.1462-5822.2005.00590.x.
  • Gopinath V, Raghunandanan S, Gomez RL, Jose L, Surendran A, Ramachandran R, Pushparajan AR, Mundayoor S, Jaleel A, Kumar RA. 2015. Profiling the proteome of Mycobacterium tuberculosis during dormancy and reactivation. Mol Cell Proteomics. 14:2160–2176. doi:10.1074/mcp.M115.051151.
  • Gowrishankar S, Pandian SK, Balasubramaniam B, Balamurugan K. 2019. Quorum quelling efficacy of marine cyclic dipeptide-cyclo (L-leucyl-L-prolyl) against the uropathogen Serratia marcescens. Food Chem Toxicol. 123:326–336. doi:10.1016/j.fct.2018.11.013
  • Hancock REW, Patrzykat A. 2002. Clinical development of cationic antimicrobial peptides: from natural to novel antibiotics. Curr Drug Target Infect Dis. 2:79–83. doi:10.2174/1568005024605855.
  • Haris PI, Severcan F. 1999. FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J Mol Catal B Enzym. 7:207–221. doi:10.1016/S1381-1177(99)00030-2.
  • Helm D, Labischinski H, Schallehn G, Naumann D. 1991. Classification and identification of bacteria by Fourier-transform infrared spectroscopy. Microbiology. 137:69–79.
  • Igarashi K, Ishihama A. 1991. Bipartite functional map of the E. coli RNA polymerase α subunit: involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell. 65:1015–1022. doi:10.1016/0092-8674(91)90553-B.
  • Iype LE, Wood EA, Inman RB, Cox MM. 1994. RuvA and RuvB proteins facilitate the bypass of heterologous DNA insertions during RecA protein-mediated DNA strand exchange. J Biol Chem. 269:24967–24978.
  • Jiang D, Hatahet Z, Blaisdell JO, Melamede RJ, Wallace SS. 1997. Escherichia coli endonuclease VIII: cloning, sequencing, and overexpression of the nei structural gene and characterization of nei and nei nth mutants. J Bacteriol. 179:3773–3782. doi:10.1128/jb.179.11.3773-3782.1997
  • Jorgensen EM, Mango SE. 2002. The art and design of genetic screens: Caenorhabditis elegans. Nat Rev Genet. 3:356–369. doi:10.1038/nrg794
  • Kannappan A, Balasubramaniam B, Ranjitha R, Srinivasan R, Packiavathy IASV, Balamurugan K, Pandian SK, Ravi AV. 2019. In vitro and in vivo biofilm inhibitory efficacy of geraniol-cefotaxime combination against Staphylococcus spp. Food Chem Toxicol. 125:322–332. doi:10.1016/j.fct.2019.01.008
  • Katz C, Ron EZ. 2008. Dual role of FtsH in regulating lipopolysaccharide biosynthesis in Escherichia coli. J Bacteriol. 190:7117–7122. doi:10.1128/JB.00871-08
  • Kato Y, Komatsu S. 1996. ASABF, a novel cysteine-rich antibacterial peptide isolated from the nematode Ascaris suum purification, primary structure, and molecular cloning of cDNA. J Biol Chem. 271:30493–30498. doi:10.1074/jbc.271.48.30493
  • Kato Y, Aizawa T, Hoshino H, Kawano K, Nitta K, Zhang H. 2002. abf-1 and abf-2, ASABF-type antimicrobial peptide genes in Caenorhabditis elegans. Biochem J. 361:221–230.
  • Kreuzer KN. 2005. Interplay between DNA replication and recombination in prokaryotes. Annu Rev Microbiol. 59:43–67. doi:10.1146/annurev.micro.59.030804.121255
  • Manoharan R, Baraga JJ, Rava RP, Dasari RR, Fitzmaurice M, Feld MS. 1993. Biochemical analysis and mapping of atherosclerotic human artery using FT-IR microspectroscopy. Atherosclerosis. 103:181–193. doi:10.1016/0021-9150(93)90261-R.
  • Mardirossian M, Grzela R, Giglione C, Meinnel T, Gennaro R, Mergaert P, Scocchi M. 2014. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol. 21:1639–1647. doi:10.1016/j.chembiol.2014.10.009
  • Marudhupandiyan S, Balamurugan K. 2017. Intrinsic JNK-MAPK pathway involvement requires daf-16-mediated immune response during Shigella flexneri infection in C. elegans. Immunol Res. 65:609–621. doi:10.1007/s12026-016-8879-6
  • Marudhupandiyan S, Prithika U, Balasubramaniam B, Balamurugan K. 2017. RACK-1, a multifaceted regulator is required for C. elegans innate immunity against S. flexneri M9OT infection. Dev Comp Immunol. 74:227–236. doi:10.1016/j.dci.2017.05.008
  • Means TK, Mylonakis E, Tampakakis E, Colvin RA, Seung E, Puckett L, Tai MF, Stewart CR, Pukkila-Worley R, Hickman SE, et al. 2009. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med. 206:637–653. doi:10.1084/jem.20082109
  • Melin AM, Perromat A, Déléris G. 2000. Pharmacologic application of Fourier transform IR spectroscopy: in vivo toxicity of carbon tetrachloride on rat liver. Biopolymers. 57:160–168. doi: doi:10.1002/(SICI)1097-0282(2000)57:3.
  • Michel B, Grompone G, Florès MJ, Bidnenko V. 2004. Multiple pathways process stalled replication forks. Proc Natl Acad Sci USA. 101:12783–12788. doi:10.1073/pnas.0401586101
  • Miller WL, Wenzel CQ, Daniels C, Larocque S, Brisson JR, Lam JS. 2004. Biochemical characterization of WbpA, a UDP-N-acetyl-D-glucosamine 6-dehydrogenase involved in O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. J Biol Chem. 279:37551–37558. doi:10.1074/jbc.M404749200
  • Natalello A, Diletta AMI, Brocca S, Lotti M, Doglia SM. 2005. Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by Fourier-transform infrared spectroscopy. Biochem J. 385:511–517. doi:10.1042/BJ20041296
  • Nguyen L, Round J, O’Connell R, Geurts P, Funes-Duran M, Wong J, Vierra CA. 2001. Isolation and characterization of the activated B-cell factor 1 homolog in Caenorhabditis elegans. Nucleic Acids Res. 29:4423–4432. doi:10.1093/nar/29.21.4423
  • Oganesyan N, Ankoudinova I, Kim SH, Kim R. 2007. Effect of osmotic stress and heat shock in recombinant protein overexpression and crystallization. Protein Expression Purif. 52:280–285. doi:10.1016/j.pep.2006.09.015
  • O’Rourke EJ, Conery AL, Moy TI. 2009. Whole-animal high-throughput screens: the C. elegans model. Methods Mol Biol. 2009;486:57–75.
  • Pálffy R, Gardlík R, Behuliak M, Kadasi L, Turna J, Celec P. 2009. On the physiology and pathophysiology of antimicrobial peptides. Mol Med. 15:51. doi:10.2119/molmed.2008.00087
  • Papaioannou E, Wahjudi M, Nadal-Jimenez P, Koch G, Setroikromo R, Quax WJ. 2009. Quorum-quenching acylase reduces the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model. Antimicrob Agents Chemother. 53:4891–4897. doi:10.1128/AAC.00380-09
  • Piers KL, Brown MH, Hancock RE. 1993. Recombinant DNA procedures for producing small antimicrobial cationic peptides in bacteria. Gene. 134:7–13. doi:10.1016/0378-1119(93)90168-3
  • Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, Conroy J, Magalhaes TR, Correia C, Abrahams BS, et al. 2010. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 466:368–372. doi:10.1038/nature09146
  • Prasath KG, Sethupathy S, Pandian SK. 2019. Proteomic analysis uncovers the modulation of ergosterol, sphingolipid and oxidative stress pathway by myristic acid impeding biofilm and virulence in Candida albicans. J Proteomics. 208:103503. doi:10.1016/j.jprot.2019.103503.
  • Putker F, Bos MP, Tommassen J. 2015. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface. FEMS Microbiol Rev. 39:985–1002. doi:10.1093/femsre/fuv026
  • Radek K, Gallo R. 2007. Antimicrobial peptides: natural effectors of the innate immune system. Semin Immunopathol. 29:27–43. doi:10.1007/s00281-007-0064-5
  • Ramanathan S, Ravindran D, Arunachalam K, Arumugam VR. 2018. Inhibition of quorum sensing-dependent biofilm and virulence genes expression in environmental pathogen Serratia marcescens by petroselinic acid. Antonie Van Leeuwenhoek. 111:501–515. doi:10.1007/s10482-017-0971-y
  • Ramos R, Moreira S, Rodrigues A, Gama M, Domingues L. 2013. Recombinant expression and purification of the antimicrobial peptide magainin-2. Biotechnol Prog. 29:17–22.
  • Roeder T, Stanisak M, Gelhaus C, Bruchhaus I, Grötzinger J, Leippe M. 2010. Caenopores are antimicrobial peptides in the nematode Caenorhabditis elegans instrumental in nutrition and immunity. Dev Comp Immunol. 34:203–209. doi:10.1016/j.dci.2009.09.010
  • Sader HS, Ferraro MJ, Reller LB, Schreckenberger PC, Swenson JM, Jones RN. 2007. Reevaluation of Clinical and Laboratory Standards Institute disk diffusion breakpoints for tetracyclines for testing Enterobacteriaceae. J Clin Microbiol. 45:1640–1643. doi:10.1128/JCM.00143-07
  • Sahu SN, Anriany Y, Grim CJ, Kim S, Chang Z, Joseph SW, Cinar HN. 2013. Identification of virulence properties in Salmonella Typhi DT104 using Caenorhabditis elegans. PLoS One. 8:e76673. doi:10.1371/journal.pone.0076673
  • Sambrook J, Russell DW. 2006. Expression of cloned genes in E. coli using IPTG-inducible promoters. Cold Spring Harb Protoc. 2006:pdb.prot4085. doi:10.1101/pdb.prot4085
  • Schmidt A, Forne I, Imhof A. 2014. Bioinformatic analysis of proteomics data. BMC Syst Biol. 8:S3. doi:10.1186/1752-0509-8-S2-S3
  • Schmutz C, Ahrné E, Kasper CA, Tschon T, Sorg I, Dreier RF, Schmidt A, Arrieumerlou C. 2013. Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol Cell Proteomics. 12:2952–2968. doi:10.1074/mcp.M113.029918
  • Schulenburg H, Ewbank JJ. 2007. The genetics of pathogen avoidance in Caenorhabditis elegans. Mol Microbiol. 66:563–570. doi:10.1111/j.1365-2958.2007.05946.x
  • Sem X, Rhen M. 2012. Pathogenicity of Salmonella enterica in Caenorhabditis elegans relies on disseminated oxidative stress in the infected host. PLoS One. 7:e45417. doi:10.1371/journal.pone.0045417
  • Shanmuganathan B, Sathya S, Balasubramaniam B, Balamurugan K, Devi KP. 2019. Amyloid-β induced neuropathological actions are suppressed by Padina gymnospora (Phaeophyceae) and its active constituent α-bisabolol in Neuro2a cells and transgenic Caenorhabditis elegans Alzheimer's model. Nitric Oxide. 91:52–66. doi:10.1016/j.niox.2019.07.009
  • Sheng M, Gorzsás A, Tuck S. 2016. Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms. Worm. 5:e1132978. doi:10.1080/21624054.2015.1132978
  • Signorini C, Ferrali M, Ciccoli L, Sugherini L, Magnani A, Comporti M. 1995. Iron release, membrane protein oxidation and erythrocyte ageing. FEBS Lett. 362:165–170. doi:10.1016/0014-5793(95)00235-2
  • Sivamaruthi BS, Balamurugan K. 2014. Physiological and immunological regulations in Caenorhabditis elegans infected with Salmonella enterica serovar Typhi. Indian J Microbiol.. 54:52–58. doi:10.1007/s12088-013-0424-x
  • Skunca N, Bošnjak M, Krisko A, Panov P, Džeroski S, Smuc T, Supek F. 2013. Phyletic profiling with cliques of orthologs is enhanced by signatures of paralogy relationships. PLoS Comput Biol. 9:e1002852. doi:10.1371/journal.pcbi.1002852.
  • Stiernagle T. 1999. Maintenance of C. elegans. WormBook. 2:51–67.
  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, et al. 2015. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43:D447–D452. doi:10.1093/nar/gku1003
  • Teh CH, Nazni WA, Nurulhusna AH, Norazah A, Lee HL. 2017. Determination of antibacterial activity and minimum inhibitory concentration of larval extract of fly via resazurin-based turbidometric assay. BMC Microbiol. 17:36. doi:10.1186/s12866-017-0936-3
  • Thaver D, Zaidi AK, Critchley JA, Azmatullah A, Madni SA, Bhutta ZA. 2008. Fluoroquinolones for treating typhoid and paratyphoid fever (enteric fever). Cochrane Database Syst Rev. 2005:CD004530.
  • Tomisawa S, Hojo E, Umetsu Y, Ohki S, Kato Y, Miyazawa M, Mizuguchi M, Kamiya M, Kumaki Y, Kikukawa T, et al. 2013. Overexpression of an antimicrobial peptide derived from C. elegans using an aggregation-prone protein coexpression system. AMB Express. 3:45. doi:10.1186/2191-0855-3-45
  • Toyran N, Severcan F. 2003. Competitive effect of vitamin D2 and Ca2+ on phospholipid model membranes: an FTIR study. Chem. Phys Lipids. 123:165–176. doi:10.1016/S0009-3084(02)00194-9
  • Vigneshkumar B, Radhakrishnan S, Balamurugan K. 2014. Analysis of Pseudomonas aeruginosa PAO1 lipid A changes during the interaction with model organism, Caenorhabditis elegans. Lipids. 49:555–575. doi:10.1007/s11745-014-3898-3
  • Vigneshwari L, Balasubramaniam B, Sethupathy S, Pandian SK, Balamurugan K. 2018. O-GlcNAcylation confers protection against Staphylococcus aureus infection in Caenorhabditis elegans through ubiquitination. RSC Adv. 8:23089–23100. doi:10.1039/C8RA00279G
  • Yamazoe M, Onogi T, Sunako Y, Niki H, Yamanaka K, Ichimura T, Hiraga S. 1999. Complex formation of MukB, MukE and MukF proteins involved in chromosome partitioning in Escherichia coli. EMBO J. 18:5873–5884. doi:10.1093/emboj/18.21.5873.
  • Zanetti M. 2004. Cathelicidins, multifunctional peptides of the innate immunity. J Leukocyte Biol. 75:39–48. doi:10.1189/jlb.0403147
  • Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature. 415:389. doi:10.1038/415389a.
  • Zhang H, Yoshida S, Aizawa T, Murakami R, Suzuki M, Koganezawa N, Matsuura A, Miyazawa M, Kawano K, Nitta K, et al. 2000. In vitro antimicrobial properties of recombinant ASABF, an antimicrobial peptide isolated from the nematode Ascaris suum. Antimicrob Agents Chemother. 44:2701–2705. doi:10.1128/AAC.44.10.2701-2705.2000

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.