Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 2
618
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Inhibition of Candida albicans and Staphylococcus aureus biofilms by centipede oil and linoleic acid

, , &
Pages 126-137 | Received 08 Oct 2019, Accepted 11 Feb 2020, Published online: 24 Feb 2020

References

  • Arrese EL, Soulages JL. 2010. Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol. 55:207–225. doi:10.1146/annurev-ento-112408-085356
  • Anderson MJ, Lin YC, Gillman AN, Parks PJ, Schlievert PM, Peterson ML. 2012. Alpha-toxin promotes Staphylococcus aureus mucosal biofilm formation. Front Cell Infect Microbiol. 2:64
  • Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, Lopez-Ribot JL, Kadosh D. 2008. UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. MBoC. 19:1354–1365. doi:10.1091/mbc.e07-11-1110
  • Banerjee M, Uppuluri P, Zhao XR, Carlisle PL, Vipulanandan G, Villar CC, Lopez-Ribot JL, Kadosh D. 2013. Expression of UME6, a key regulator of Candida albicans hyphal development, enhances biofilm formation via Hgc1-and Sun41-dependent mechanisms. Eukaryot Cell. 12:224–232. doi:10.1128/EC.00163-12
  • Basset Y, Cizek L, Cuenoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Odegaard F, Roslin T, Schmidl J, et al. 2012. Arthropod diversity in a tropical forest. Science. 338:1481–1484. doi:10.1126/science.1226727
  • Caiazza NC, O'Toole GA. 2003. Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J Bacteriol. 185:3214–3217. doi:10.1128/JB.185.10.3214-3217.2003
  • Carradori S, Chimenti P, Fazzari M, Granese A, Angiolella L. 2016. Antimicrobial activity, synergism and inhibition of germ tube formation by Crocus sativus-derived compounds against Candida spp. J Enzym Inhib Med Chem. 31:189–193. doi:10.1080/14756366.2016.1180596
  • CLSI 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 10th ed.: Approved Standard M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute.
  • CLSI 2017. Reference methods for broth dilution antifungal susceptibility testing of yeasts. 4th ed.: Standard M27. Wayne, PA: Clinical and Laboratory Standards Institute.
  • Defoirdt T, Boon N, Sorgeloos P, Verstraete W, Bossier P. 2009. Short-chain fatty acids and poly-beta-hydroxyalkanoates: (new) biocontrol agents for a sustainable animal production. Biotechnol Adv. 27:680–685. doi:10.1016/j.biotechadv.2009.04.026
  • Desbois AP, Lawlor KC. 2013. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar Drugs. 11:4544–4557. doi:10.3390/md11114544
  • Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 85:1629–1642. doi:10.1007/s00253-009-2355-3
  • Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis. 8:881–890. doi:10.3201/eid0809.020063
  • Feng QH, Summers E, Guo B, Fink G. 1999. Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol. 181:6339–6346. doi:10.1128/JB.181.20.6339-6346.1999
  • Guil-Guerrero JL, Ramos-Bueno RP, Gonzalez-Fernandez MJ, Fabrikov D, Sanchez-Muros MJ, Barroso FG. 2018. Insects as food: fatty acid profiles, lipid classes, and sn-2 fatty acid distribution of lepidoptera larvae. Eur J Lipid Sci Technol. 120:1700391. doi:10.1002/ejlt.201700391
  • Haine ER, Moret Y, Siva-Jothy MT, Rolff J. 2008. Antimicrobial defense and persistent infection in insects. Science. 322:1257–1259. doi:10.1126/science.1165265
  • Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2:95–108. doi:10.1038/nrmicro821
  • Harriott MM, Noverr MC. 2009. Candida albicans and Staphylococcus aureus form polymicrobial biofilms: effects on antimicrobial resistance. Antimicrob Agents Chemother. 53:3914–3922. doi:10.1128/AAC.00657-09
  • Harriott MM, Noverr MC. 2011. Importance of Candida-bacterial polymicrobial biofilms in disease. Trends Microbiol. 19:557–563. doi:10.1016/j.tim.2011.07.004
  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 146:2395–2407. doi:10.1099/00221287-146-10-2395
  • Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP. 1972. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother. 2:23–28. doi:10.1128/AAC.2.1.23
  • Kim HS, Ham SY, Jang Y, Sun PF, Park JH, Lee JH, Park HD. 2019. Linoleic acid, a plant fatty acid, controls membrane biofouling via inhibition of biofilm formation. Fuel. 253:754–761. doi:10.1016/j.fuel.2019.05.064
  • Kim Y-G, Lee J-H, Gwon G, Kim S-I, Park JG, Lee J. 2016. Essential oils and eugenols inhibit biofilm formation and the virulence of Escherichia coli O157:H7. Sci Rep. 6:36377. doi:10.1038/srep36377
  • Kim Y-G, Lee J-H, Raorane CJ, Oh ST, Park JG, Lee J. 2018. Herring oil and omega fatty acids inhibit Staphylococcus aureus biofilm formation and virulence. Front Microbiol. 9:1241 doi:10.3389/fmicb.2018.01241
  • Lee W, Hwang JS, Lee DG. 2015. A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism. Biochimie. 118:176–184. doi:10.1016/j.biochi.2015.08.015
  • Lee J-H, Kim Y-G, Choi P, Ham J, Park JG, Lee J. 2018. Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front Cell Infect Microbiol. 8:299 doi:10.3389/fcimb.2018.00299
  • Lee J-H, Kim Y-G, Khadke SK, Yamano A, Watanabe A, Lee J. 2019. Inhibition of biofilm formation by Candida albicans and polymicrobial microorganisms by nepodin via hyphal-growth suppression. ACS Infect Dis. 5:1177–1187. doi:10.1021/acsinfecdis.9b00033
  • Lee J-H, Kim Y-G, Park JG, Lee J. 2017. Supercritical fluid extracts of Moringa oleifera and their unsaturated fatty acid components inhibit biofilm formation by Staphylococcus aureus. Food Control. 80:74–82. doi:10.1016/j.foodcont.2017.04.035
  • Lee J-H, Kim Y-G, Ryu SY, Lee J. 2016. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci Rep. 6:19267. doi:10.1038/srep19267
  • Lee K, Lee J-H, Ryu SY, Cho MH, Lee J. 2014. Stilbenes reduce Staphylococcus aureus hemolysis, biofilm formation, and virulence. Foodborne Pathog Dis. 11:710–717. doi:10.1089/fpd.2014.1758
  • Liu J, Jiang J, Zong J, Li B, Pan T, Diao Y, Zhang Z, Zhang X, Lu M, Wang S. 2019. Antibacterial and anti-biofilm effects of fatty acids extract of dried Lucilia sericata larvae against Staphylococcus aureus and Streptococcus pneumoniae in vitro. Nat Prod Res. 1–4.
  • Lowy FD. 2003. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest. 111:1265–1273. doi:10.1172/JCI18535
  • Manoharan RK, Lee J-H, Kim Y-G, Kim S-I, Lee J. 2017. Inhibitory effects of the essential oils a-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Biofouling. 33:143–155. doi:10.1080/08927014.2017.1280731
  • McCreath KJ, Specht CA, Robbins PW. 1995. Molecular cloning and characterization of chitinase genes from Candida albicans. Proc Natl Acad Sci USA. 92:2544–2548. doi:10.1073/pnas.92.7.2544
  • Moon S-S, Cho N, Shin J, Seo Y, Lee CO, Choi SU. 1996. Jineol, a cytotoxic alkaloid from the centipede Scolopendra subspinipes. J Nat Prod. 59:777–779. doi:10.1021/np960188t
  • Murzyn A, Krasowska A, Stefanowicz P, Dziadkowiec D, Łukaszewicz M. 2010. Capric acid secreted by S. boulardii inhibits C. albicans filamentous growth, adhesion and biofilm formation. PloS One. 5:e12050. doi:10.1371/journal.pone.0012050
  • Nithyanand P, Shafreen RMB, Muthamil S, Pandian SK. 2015. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol Res. 179:20–28. doi:10.1016/j.micres.2015.06.009
  • Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, Edwards JE, Filler SG, Mitchell AP. 2006. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2:e63. doi:10.1371/journal.ppat.0020063
  • Nobile CJ, Nett JE, Andes DR, Mitchell AP. 2006. Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell. 5:1604–1610. doi:10.1128/EC.00194-06
  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH. 2010. An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov. 9:719–727. doi:10.1038/nrd3074
  • Peng MF, Biswas D. 2017. Short chain and polyunsaturated fatty acids in host gut health and foodborne bacterial pathogen inhibition. Crit Rev Food Sci. 57:3987–4002. doi:10.1080/10408398.2016.1203286
  • Peters BM, Ward RM, Rane HS, Lee SA, Noverr MC. 2013. Efficacy of ethanol against Candida albicans and Staphylococcus aureus polymicrobial biofilms. Antimicrob Agents Chemother. 57:74–82. doi:10.1128/AAC.01599-12
  • Pukkila-Worley R, Peleg AY, Tampakakis E, Mylonakis E. 2009. Candida albicans hyphal formation and virulence assessed using a Caenorhabditis elegans infection model. Eukaryot Cell. 8:1750–1758. doi:10.1128/EC.00163-09
  • Scherr TD, Hanke ML, Huang OW, James DBA, Horswill AR, Bayles KW, Fey PD, Torres VJ, Kielian T. 2015. Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. mBio. 6.
  • Shareck J, Nantel A, Belhumeur P. 2011. Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Eukaryot Cell. 10:565–577. doi:10.1128/EC.00305-10
  • Shi D, Zhao Y, Yan H, Fu H, Shen Y, Lu G, Mei H, Qiu Y, Li D, Liu W. 2016. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans. Int J Clin Pharmacol Ther. 54:343–353. doi:10.5414/CP202460
  • Simoes M, Simoes LC, Vieira MJ. 2010. A review of current and emergent biofilm control strategies. LWT-Food Sci Technol. 43:573–583. doi:10.1016/j.lwt.2009.12.008
  • Thibane VS, Ells R, Hugo A, Albertyn J, van Rensburg WJ, Van Wyk PW, Kock JL, Pohl CH. 2012. Polyunsaturated fatty acids cause apoptosis in C. albicans and C. dubliniensis biofilms. Biochim Biophys Acta. 1820:1463–1468. doi:10.1016/j.bbagen.2012.05.004
  • Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 28:603–661. doi:10.1128/CMR.00134-14
  • Tossi A, Sandri L, Giangaspero A. 2000. Amphipathic, alpha-helical antimicrobial peptides. Biopolymers. 55:4–30. doi:10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M
  • Vilchez R, Lemme A, Ballhausen B, Thiel V, Schulz S, Jansen R, Sztajer H, Wagner-Dobler I. 2010. Streptococcus mutans inhibits Candida albicans hyphal formation by the fatty acid signaling molecule trans-2-decenoic acid (SDSF). Chem Eur J Chem Biol. 11:1552–1562. doi:10.1002/cbic.201000086
  • White DG, Zhao SH, Simjee S, Wagner DD, McDermott PF. 2002. Antimicrobial resistance of foodborne pathogens. Microbes Infect. 4:405–412. doi:10.1016/S1286-4579(02)01554-X
  • Wright GD. 2015. Solving the antibiotic crisis. ACS Infect Dis. 1:80–84. doi:10.1021/id500052s
  • Zago CE, Silva S, Sanita PV, Barbugli PA, Dias CMI, Lordello VB, Vergani CE. 2015. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA). PloS One. 10:e0123206. doi:10.1371/journal.pone.0123206
  • Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature. 415:389–395. doi:10.1038/415389a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.