Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 2
650
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Combining a bio-based polymer and a natural antifoulant into an eco-friendly antifouling coating

, , &
Pages 200-209 | Received 16 Jul 2019, Accepted 24 Mar 2020, Published online: 07 Apr 2020

References

  • Alberte RS, Snyder S, Zahuranec BJ, Whetstone M. 1992. Biofouling research needs for the United States Navy: program history and goals. Biofouling. 6:91–95. doi:10.1080/08927019209386214
  • Alzieu C. 2000. Environmental impact of TBT: the French experience. Sci. Total Environ. 258:99–102. doi:10.1016/S0048-9697(00)00510-6
  • Armstrong E, Boyd KG, Burgess JG. 2000. Prevention of marine biofouling using natural compounds from marine organisms. Biotechnol. Annu. Rev. 6:221–241. doi:10.1016/S1387-2656(00)06024-5
  • ASTM D6903-07 (2013). 2013a. Standard test method for determination of organic biocide release rate from antifouling coatings in substitute ocean water. West Conshohocken (PA): ASTM International.
  • ASTM D1141-98 (2013). 2013b. Standard practice for the preparation of substitute ocean water. West Conshohocken (PA): ASTM International.
  • Brooks S, Waldock M. 2009. The use of copper as a biocide in marine antifouling paints. Advances in marine antifouling coatings and technologies. Hellio C, Yebra DM, editors. Cambridge, UK: Woodhead Publishing. p. 492–521.
  • Callow JA, Callow ME. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat. Commun. 2:244–254. doi:10.1038/ncomms1251
  • Carbone-Howell AL, Stebbins ND, Uhrich KE. 2014. Poly(anhydride-esters) comprised exclusively of naturally occurring antimicrobials and EDTA: antioxidant and antibacterial activities. Biomacromolecules. 15:1889–1895. doi:10.1021/bm500303a
  • Carteau D, Vallée-Réhel K, Linossier I, Quiniou F, Davy R, Compère C, Delbury M, Faÿ F. 2014. Development of environmentally friendly antifouling paints using biodegradable polymer and lower toxic substances. Prog. Org. Coat. 77:485–493. doi:10.1016/j.porgcoat.2013.11.012
  • Chen L, Sun J, Zhang H, Au DW T, Lam PKS, Zhang W, Bajic VB, Qiu JW, Qian PY. 2015. Hepatic proteomic responses in marine medaka (Oryzias melastigma) chronically exposed to antifouling compound butenolide [5-octylfuran-2(5H)-one] or 4,5-dichloro-2-N-octyl-4-isothiazolin-3-one (DCOIT). Environ Sci Technol. 49:1851–1859. doi:10.1021/es5046748
  • Chen L, Xu Y, Wang W, Qian PY. 2015. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions. Chemosphere. 119:1075–1083. doi:10.1016/j.chemosphere.2014.09.056
  • Chen L, Ye R, Xu Y, Gao Z, Au DWT, Qian PY. 2014. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma). Aquat. Toxicol. 149:116–125. doi:10.1016/j.aquatox.2014.01.023
  • Clare AS, Rittschof D, Gerhart DJ, Maki JS. 1992. Molecular approaches to nontoxic antifouling. Invertebr. Reprod. Dev. 22:67–76. doi:10.1080/07924259.1992.9672258
  • Conti B, Pavanetto F, Genta I. 1991. Use of polylactic acid for the preparation of microparticulate drug delivery systems. J Microencapsul. 9:153–166. doi:10.3109/02652049109021231
  • Ding W, Ma C, Zhang W, Chiang H, Tam C, Xu Y, Zhang G, Qian PY. 2018. Anti-biofilm effect of a butenolide/polymer coating and metatranscriptomic analyses. Biofouling. 34:111–122. doi:10.1080/08927014.2017.1409891
  • Elsawy MA, Kim KH, Park JW, Deep A. 2017. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sust. Energ. Rev. 79:1346–1352. doi:10.1016/j.rser.2017.05.143
  • Faÿ F, Renard E, Langlois V, Linossier I, Vallée-Rehel K. 2007. Development of poly(e-caprolactone-co-L-lactide) andpoly(e-caprolactone-co-d-valerolactone) as new degradablebinder used for antifouling paint. Eur Polym J. 43:4800–4813. doi:10.1016/j.eurpolymj.2007.07.045
  • Fukushima K, Sogo K, Miura S, Kimura Y. 2004. Production of D-lactic acid by bacterial fermentation of rice starch. Macromol Biosci. 4:1021–1027. doi:10.1002/mabi.200400080
  • Fukuzaki H, Yoshida M, Asano M, Kumakura M, Mashimo T, Yuasa H, Imai K, Yamanaka H. 1990. Synthesis of low-molecular-weight copoly(l-lactic acid/ɛ-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers. Polymer. 31:2006–2014. doi:10.1016/0032-3861(90)90031-S
  • Fusetani N. 2004. Biofouling and antifouling. Nat Prod Rep. 21:94–104. doi:10.1039/b302231p
  • Gatidou G, Thomaidis NS. 2007. Evaluation of single and joint toxic effects of two antifouling biocides, their main metabolites and copper using phytoplankton bioassays. Aquat. Toxicol. 85:184–191. doi:10.1016/j.aquatox.2007.09.002
  • Katranitsas A, Castritsi-Catharios J, Persoone G. 2003. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism. Mar Pollut Bull. 46:1491–1494. doi:10.1016/S0025-326X(03)00253-4
  • Konstantinou IK, Albanis TA. 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ. Int. 30:235–248. doi:10.1016/S0160-4120(03)00176-4
  • Lejars M, Margaillan A, Bressy C. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev. 112:4347–4390. doi:10.1021/cr200350v
  • Ma J, Ma C, Yang Y, Xu W, Zhang G. 2014. Biodegradable polyurethane carrying antifoulants for inhibition of marine biofouling. Ind Eng Chem Res. 53:12753–12759. doi:10.1021/ie502147t
  • Ma C, Xu L, Xu W, Zhang G. 2013. Degradable polyurethane for marine anti-biofouling. J Mater Chem B. 1:3099. doi:10.1039/c3tb20454e
  • Ma C, Zhang W, Zhang G, Qian PY. 2017. Environmentally friendly antifouling coatings based on biodegradable polymer and natural antifoulant. ACS Sustainable Chem Eng. 5:6304–6309. doi:10.1021/acssuschemeng.7b01385
  • Matta AK, Rao RU, Suman KNS, Rambabu V. 2014. Preparation and characterization of biodegradable PLA/PCL polymeric blends. Procedia Mater Sci. 6:1266–1270. doi:10.1016/j.mspro.2014.07.201
  • Pillai O, Panchagnula R. 2001. Polymers in drug delivery. Curr Opin Chem Biol. 5:447–451. doi:10.1016/S1367-5931(00)00227-1
  • Qi SH, Zhang S, Qian PY, Yang LH. 2008. Antifouling and antibacterial compounds of the South China Sea gorgonians Subergorgia suberosa and Scripearia gracillis. Nat Prod Res. 22:154–166. doi:10.1080/14786410701642441
  • Qian PY, Li Z, Xu Y, Li Y, Fusetani N. 2015. Marine natural products and their synthetic analogs as antifouling compounds: 2009 − 2014. Biofouling. 31:101–122. doi:10.1080/08927014.2014.997226
  • Qian PY, Xu Y, Fusetani N. 2009. Natural products as antifouling compounds: recent progress and future perspectives. Biofouling. 26:223–234. doi:10.1080/08927010903470815
  • Rutkowska M, Krasowska K, Heimowska A, Steinka I, Janik H. 2002. Degradation of polyurethanes in sea water. Polym Degrad Stab. 76:233–239. doi:10.1016/S0141-3910(02)00019-8
  • Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 9:671–675. doi:10.1038/nmeth.2089
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi:10.1080/08927014.2010.542809
  • Smith A, Hunneyball IM. 1986. Evaluation of poly(lactic acid) as a biodegradable drug delivery system for parenteral administration. Int J Pharm. 30:215–220. doi:10.1016/0378-5173(86)90081-5
  • Thomas K. 2009. The use of broad-spectrum organic biocides in marine antifouling paints. Advances in marine antifouling coatings and technologies. Hellio C, Yebra DM, editors. Cambridge, UK: Woodhead Publishing. p. 522–553.
  • Thomas KV, Fileman TW, Readman JW, Waldock MJ. 2001. Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Mar Pollut Bull. 42:677–688. doi:10.1016/S0025-326X(00)00216-2
  • Timbuntam W, Sriroth K, Tokiwa Y. 2006. Lactic acid production from sugar-cane juice by a newly isolated Lactobacillus sp. Biotechnol Lett. 28:811–814. doi:10.1007/s10529-006-9003-0
  • Voulvoulis N, Scrimshaw MD, Lester JN. 1999. Alternative antifouling biocides. Appl Organometal Chem. 13:135–143. doi:10.1002/(SICI)1099-0739(199903)13:3<135::AID-AOC831>3.0.CO;2-G
  • Wang Z, Yu L, Ding M, Tan H, Li J, Fu Q. 2011. Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and L-lysine diisocyanate. Polym Chem. 2:601–607. doi:10.1039/C0PY00235F
  • Xie Q, Pan J, Ma C, Zhang G. 2019. Dynamic surface antifouling: mechanism and systems. Soft Matter. 15:1087–1107. doi:10.1039/C8SM01853G
  • Xu Y, He H, Schulz S, Liu X, Fusetani N, Xiong H, Xiao X, Qian PY. 2010. Potent antifouling compounds produced by marine Streptomyces. Bioresour Technol. 101:1331–1336. doi:10.1016/j.biortech.2009.09.046
  • Xu W, Ma C, Ma J, Gan T, Zhang G. 2014. Marine biofouling resistance of polyurethane with biodegradation and hydrolyzation. ACS Appl Mater Interfaces. 6:4017–4024. doi:10.1021/am4054578
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology – past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104. doi:10.1016/j.porgcoat.2003.06.001
  • Yebra DM, Kiil S, Dam-Johansen K, Weinell C. 2005. Reaction rate estimation of controlled-release antifouling paint binders: rosin-based systems. Prog Org Coat. 53:256–275. doi:10.1016/j.porgcoat.2005.03.008
  • Yu J. 2003. Biodegradation-based polymer surface erosion and surface renewal for foul-release at low ship speeds. Biofouling. 19:83–90. doi:10.1080/0892701031000063820
  • Zhang YF, Wang GC, Xu Y, Sougrat R, Qian PY. 2011. The effect of butenolide on behavioral and morphological changes in two marine fouling species, the barnacle Balanus amphitrite and the bryozoan Bugula neritina. Biofouling. 27:467–475. doi:10.1080/08927014.2011.583985
  • Zhang YF, Xiao K, Chandramouli KH, Xu Y, Pan K, Wang WX, Qian PY. 2011. Acute toxicity of the antifouling compound butenolide in non-target organisms. PLoS One. 6:e23803. doi:10.1371/journal.pone.0023803
  • Zhang YF, Zhang H, He L, Liu C, Xu Y, Qian PY. 2012. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. ACS Chem Biol. 7:1049–1058. doi:10.1021/cb200545s

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.