Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 4
542
Views
26
CrossRef citations to date
0
Altmetric
Articles

Aluminium oxide nanoparticles inhibit EPS production, adhesion and biofilm formation by multidrug resistant Acinetobacter baumannii

, , , , , , & show all
Pages 492-504 | Received 05 Nov 2019, Accepted 28 May 2020, Published online: 12 Jun 2020

References

  • Agnihotri S, Mukherji S, Mukherji S. 2014. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4:3974–3983. doi:10.1039/C3RA44507K
  • Ansari MA, Khan HM, Khan AA, Pal R, Cameotra S. 2013. Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. J Nanopart Res. 15:1970.
  • Ansari MA, Khan HM, Khan AA, Cameotra SS, Alzohairy M. 2015. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J Med Microbiol. 33:101–109. doi:10.4103/0255-0857.148402
  • Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L. 2010. The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 6:3824–3846. doi:10.1016/j.actbio.2010.04.001
  • Azam A, Ahmed AS, Oves M, Khan MS, Memic A. 2012. Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int J Nanomed. 7:3527–3535.
  • Azeredo J, Oliveira R. 2000. The role of exopolymers in the attachment of Sphingomonas paucimobilis. Biofouling. 16:59–67. doi:10.1080/08927010009378430
  • Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. doi:10.1016/0003-2697(76)90527-3
  • Choi CH, Lee EY, Lee YC, Park TI, Kim HJ, Hyun SH, Kim SA, Lee S-K, Lee JC. 2005. Outer membrane protein 38 of Acinetobacter baumannii localizes to the mitochondria and induces apoptosis of epithelial cells. Cell Microbiol. 7:1127–1138. doi:10.1111/j.1462-5822.2005.00538.x
  • Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH. 1985. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microb. 22:996–1006. doi:10.1128/JCM.22.6.996-1006.1985
  • De Vuyst L, Vanderveken F, Van de Ven S, Degeest B. 1998. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in milk medium and evidence for their growth-associated biosynthesis. J Appl Microbiol. 84:1059–1068.
  • Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. 2020. Inhibition of bacterial biofilm formation. DOI: doi:10.5772/intechopen.90614
  • Djurišić AB, Leung YH, Ng AC, Xu XY, Lee PH, Degger N, Wu RSS. 2015. Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. Small. 11:26–44. doi:10.1002/smll.201303947
  • Dosler S, Karaaslan E. 2014. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 62:32–37. doi:10.1016/j.peptides.2014.09.021
  • Edmundson M, Thanh NK, Song B. 2013. Nanoparticles based stem cell tracking in regenerative medicine. Theranostics. 3:573–582. doi:10.7150/thno.5477
  • Freeman DJ, Falkiner FR, Keane CT. 1989. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 42: 872–874.
  • Haney C, Rowe JJ, Robinson JB. 2012. Spions increase biofilm formation by Pseudomonas aeruginosa. JBNB. 03:508–518. doi:10.4236/jbnb.2012.324052
  • Hayat S, Muzammil S, Rasool MH, Nisar Z, Hussain SZ, Sabri AN, Jamil S. 2018. In vitro antibiofilm and anti-adhesion effects of magnesium oxide nanoparticles against antibiotic resistant bacteria. Microbiol Immunol. 62:211–220. doi:10.1111/1348-0421.12580
  • Hori K, Matsumoto S. 2010. Bacterial adhesion: from mechanism to control. Biochem Eng J. 48:424–434. doi:10.1016/j.bej.2009.11.014
  • Horie M, Fujita K, Kato H, Endoh S, Nishio K, Komaba LK, Nakamura A, Miyauchi A, Kinugasa S, Hagihara Y, et al. 2012. Association of the physical and chemical properties and the cytotoxicity of metal oxide nanoparticles: metal ion release, adsorption ability and specific surface area. Metallomics. 4:350–360. doi:10.1039/c2mt20016c
  • Jiang W, Mashayekhi H, Xing B. 2009. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ Pollut. 157:1619–1625. doi:10.1016/j.envpol.2008.12.025
  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 3:a010306.
  • Kristiansen BE, Rustad L, Spanne O, Bjorvatn B. 1983. Effect of subminimal inhibitory concentrations of antimicrobial agents on the piliation and adherence of Neisseria meningitidis. Antimicrob Agents Chemother. 24:731–734. doi:10.1128/AAC.24.5.731
  • Lellouche J, Friedman A, Lellouche JP, Gedanken A, Banin E. 2012. Improved antibacterial and antibiofilm activity of magnesium fluoride nanoparticles obtained by water-based ultrasound chemistry. Nanomedicine. 8:702–711. doi:10.1016/j.nano.2011.09.002
  • Lorian V, Gemmel GC. 1991. Effect of low antibiotic concentrations on bacteria: effects on ultrastructure, virulence, and susceptibility to immunodefenses. In: Lorian V, editor. Antibiotics in laboratory medicine. Baltimore (MD): Williams & Wilkins; p. 493–555.
  • Lu B, Lu F, Ran L, Yu K, Xiao Y, Li Z, Dai F, Wu D, Lan G. 2018. Imidazole-molecule-capped chitosan-gold nanocomposites with enhanced antimicrobial activity for treating biofilm-related infections. J Colloid Interface Sci. 531:269–281. doi:10.1016/j.jcis.2018.07.058
  • Mukherjee A, Sadiq M, Prathna TC, Chandrasekaran N. 2011. Antimicrobial activity of aluminium oxide nanoparticles for potential clinical applications. In: A. Méndez-Vilas, editor. Science against microbial pathogens: communicating current research and technological advances. Badajoz, Spain: Formatex Research Center; p. 245–251.
  • Pal S, Tak YK, Song JM. 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 73:1712–1720. doi:10.1128/AEM.02218-06
  • Peleg AY, Seifert H, Paterson DL. 2008. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev. 21:538–582. doi:10.1128/CMR.00058-07
  • Prashanth PA, Raveendra RS, Hari Krishna R, Ananda S, Bhagya NP, Nagabhushana BM, Lingaraju K, Raja Naika H. 2015. Synthesis, characterizations, antibacterial and photoluminescence studies of solution combustion-derived α-Al2O3 nanoparticles. J Asian Ceram Soc. 3:345–351.
  • Radziun E, Dudkiewicz Wilczyńska J, Książek I, Nowak K, Anuszewska EL, Kunicki A, Olszyna A, Ząbkowski T. 2011. Assessment of the cytotoxicity of aluminium oxide nanoparticles on selected mammalian cells. Toxicol In Vitro. 25:1694–1700. doi:10.1016/j.tiv.2011.07.010
  • Repetto G, del Peso A, Zurita JL. 2008. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc. 3:1125–1131. doi:10.1038/nprot.2008.75
  • Reyes VC, Opot SO, Mahendra S. 2015. Planktonic and biofilm-grown nitrogen-cycling bacteria exhibit different susceptibilities to copper nanoparticles. Environ Toxicol Chem. 34:887–897. doi:10.1002/etc.2867
  • Rodrigues LR, Banat IM, Van der Mei HC, Teixeira JA, Oliveira R. 2006. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol. 100:470–480. doi:10.1111/j.1365-2672.2005.02826.x
  • Romero D, Aguilar C, Losick R, Kolter R. 2010. Amyloid fibers provide structural integrity to Bacillus subtilis biofilms. Proc Natl Acad Sci USA. 107:2230–2234. doi:10.1073/pnas.0910560107
  • Sadiq IM, Chowdhury B, Chandrasekaran N, Mukherjee A. 2009. Antimicrobial sensitivity of Escherichia coli to alumina nanoparticles. Nanomedicine. 5:282–286. doi:10.1016/j.nano.2009.01.002
  • Shah S, Gaikwad S, Nagar S, Kulshrestha S, Vaidya V, Nawani N, Pawar S. 2019. Biofilm inhibition and anti-quorum sensing activity of phytosynthesized silver nanoparticles against the nosocomial pathogen Pseudomonas aeruginosa. Biofouling. 35:34–49. doi:10.1080/08927014.2018.1563686
  • Simon-Deckers A, Loo S, Mayne-L'hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carrière M. 2009. Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol. 43:8423–8429. doi:10.1021/es9016975
  • Singh A, Ahmed A, Prasad KN, Khanduja S, Singh SK, Srivastava JK, Gajbhiye NS. 2015. Antibiofilm and membrane-damaging potential of cuprous oxide nanoparticles against Staphylococcus aureus with reduced susceptibility to vancomycin. Antimicrob Agents Chemother. 59:6882–6890. doi:10.1128/AAC.01440-15
  • Singh P, Pandit S, Garnaes J, Tunjic S, Mokkapati VR, Sultan A, Thygesen A, Mackevica A, Mateiu RV, Daugaard AE, et al. 2018. Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial hemp) and their capacity for biofilm inhibition. Int J Nanomed. 13:3571–3591. doi:10.2147/IJN.S157958
  • Subhadra B, Oh MH, Choi CH. 2016. Quorum sensing in Acinetobacter: with special emphasis on antibiotic resistance, biofilm formation and quorum quenching. AIMS Microbiol. 2:27–41.
  • Tavakoli AH, Maram PS, Widgeon SJ, Rufner J, Van Benthem K, Ushakov S, Sen S, Navrotsky A. 2013. Amorphous alumina nanoparticles: Structure, surface energy, and thermodynamic phase stability. J Phys Chem C. 117:17123–17130. doi:10.1021/jp405820g
  • Thombre RS, Shinde V, Thaiparambil E, Zende S, Mehta S. 2016. Antimicrobial activity and mechanism of inhibition of silver nanoparticles against extreme halophilic archaea. Front Microbiol. 7:1424.
  • Tzialla C, Borghesi A, Pozzi M, Stronati M. 2015. Neonatal infections due to multi-resistant strains: epidemiology, current treatment, emerging therapeutic approaches and prevention. Clin Chim Acta. 451:71–77. doi:10.1016/j.cca.2015.02.038
  • Vinoj G, Pati R, Sonawane A, Vaseeharan B. 2015. In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrob Agents Chemother. 59:763–771. doi:10.1128/AAC.03047-14
  • Yah CS, Simate GS. 2015. Nanoparticles as potential new generation broad spectrum antimicrobial agents. Daru. 23:43. doi:10.1186/s40199-015-0125-6
  • You G, Hou J, Xu Y, Wang C, Wang P, Miao L, Ao Y, Li Y, Lv B. 2015. Effects of CeO2 nanoparticles on production and physicochemical characteristics of extracellular polymeric substances in biofilms in sequencing batch biofilm reactor. Bioresour Technol. 194:91–98. doi:10.1016/j.biortech.2015.07.006
  • Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M. 2016. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invasion to host cells. Sci Rep. 6:1–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.