Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 5
322
Views
13
CrossRef citations to date
0
Altmetric
Articles

2-Hydroxy-4-methoxybenzaldehyde from Hemidesmus indicus is antagonistic to Staphylococcus epidermidis biofilm formation

ORCID Icon, , ORCID Icon, , , ORCID Icon & ORCID Icon show all
Pages 549-563 | Received 10 Sep 2019, Accepted 29 May 2020, Published online: 26 Jun 2020

References

  • Al-Dhabi NA, Arasu MV, Rejiniemon TS. 2015. In vitro antibacterial, antifungal, antibiofilm, antioxidant, and anticancer properties of isosteviol isolated from endangered medicinal plant Pittosporum tetraspermum. Evid Based Complement Alternat Med. 2015:164261. doi:10.1155/2015/164261
  • Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, et al. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 33:1582–1614. doi:10.1016/j.biotechadv.2015.08.001
  • Badireddy AR, Korpol BR, Chellam S, Gassman PL, Engelhard MH, Lea AS, Rosso KM. 2008. Spectroscopic characterization of extracellular polymeric substances from Escherichia coli and Serratia marcescens: suppression using sub-inhibitory concentrations of bismuth thiols. Biomacromolecules. 9:3079–3089. doi:10.1021/bm800600p
  • Bai JR, Zhong K, Wu YP, Elena G, Gao H. 2019. Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control. 95:327–333. doi:10.1016/j.foodcont.2018.08.020
  • Banas JA, Hazlett KR, Mazurkiewicz JE. 2001. An in vitro model for studying the contributions of the Streptococcus mutans glucan-binding protein A to biofilm structure. In Methods in enzymology, Vol. 337. Cambridhe (MA): Academic Press; p. 425–433.
  • Boles BR, Horswill AR. 2011. Staphylococcal biofilm disassembly. Trends Microbiol. 19:449–455. doi:10.1016/j.tim.2011.06.004
  • Bowden MG, Chen W, Singvall J, Xu Y, Peacock SJ, Valtulina V, Speziale P, Höök M. 2005. Identification and preliminary characterization of cell-wall-anchored proteins of Staphylococcus epidermidis. Microbiology (Reading, Engl). 151:1453–1464. doi:10.1099/mic.0.27534-0
  • Brown J, Alexander M, Williams P, Hardie K. 2019. A multiplatform approach to investigate the structure and architecture of the biofilms of Pseudomonas aeruginosa and Staphylococcus aureus in response to antimicrobial treatment. Access Microbiol. 1(A):902. doi:10.1099/acmi.ac2019.po0590.
  • Cargill JS, Upton M. 2009. Low concentrations of vancomycin stimulate biofilm formation in some clinical isolates of Staphylococcus epidermidis. J Clin Pathol. 62:1112–1116. doi:10.1136/jcp.2009.069021
  • Chung PY, Toh YS. 2014. Anti-biofilm agents: recent breakthrough against multi-drug resistant Staphylococcus aureus. Pathog Dis. 70:231–239. doi:10.1111/2049-632x.12141
  • Clinical and Laboratory Standards Institute (CLSI). 2006. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. CLSI document M7-A7, 7th ed. Wayne: Clinical and Laboratory Standards Institute.
  • Darouiche RO, Hull RA. 2012. Bacterial interference for prevention of urinary tract infection. Clin Infect Dis. 55:1400–1407. doi:10.1093/cid/cis639
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1951. A colorimetric method for the determination of sugars. Nature. 168:167. doi:10.1038/168167a0
  • FDA. 2016. Botanical drug development: guidance for industry. FDA-2000-D-0103. Rockville (MD): US Department of Health and Human Services FDA, Center for Drug Evaluation and Research (CDER).
  • Freeman DJ, Falkiner FR, Keane CT. 1989. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol. 42:872–874. doi:10.1136/jcp.42.8.872
  • Gomes F, Teixeira P, Oliveira R. 2014. Mini-review: Staphylococcus epidermidis as the most frequent cause of nosocomial infections: old and new fighting strategies. Biofouling. 30:131–141. doi:10.1080/08927014.2013.848858
  • Harohally NV, Cherita C, Bhatt P, Appaiah K. 2017. Antiaflatoxigenic and Antimicrobial activities of Schiff bases of 2-hydroxy-4-methoxybenzaldehyde, cinnamaldehyde, and similar aldehydes. J Agric Food Chem. 65:8773–8778. doi:10.1021/acs.jafc.7b02576
  • Harvey AL. 2008. Natural products in drug discovery. Drug Discov Today. 13:894–901. doi:10.1016/j.drudis.2008.07.004
  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 20:1083–1091. doi:10.1111/j.1365-2958.1996.tb02548.x
  • Jahn CE, Charkowski AO, Willis DK. 2008. Evaluation of isolation methods and RNA integrity for bacterial RNA quantitation. J Microbiol Methods. 75:318–324. doi:10.1016/j.mimet.2008.07.004
  • Jamshidi-Kia F, Lorigooini Z, Amini-Khoei H. 2018. Medicinal plants: past history and future perspective. J Herbmed Pharmacol. 7:1–7. doi:10.15171/jhp.2018.01
  • Kaiser TDL, Pereira EM, dos Santos KRN, Maciel ELN, Schuenck RP, Nunes A. 2013. Modification of the Congo red agar method to detect biofilm production by Staphylococcus epidermidis. Diagn Microbiol Infect Dis. 75:235–239. doi:10.1016/j.diagmicrobio.2012.11.014
  • Kannappan A, Santhakumari S, Srinivasan R, Pandian SK, Ravi AV. 2019a. Hemidesmus indicus, a traditional medicinal plant, targets the adherence of multidrug-resistant pathogens to form biofilms. Biocatal Agric Biotechnol. 21:101338. doi:10.1016/j.bcab.2019.101338
  • Kannappan A, Sivaranjani M, Srinivasan R, Rathna J, Pandian SK, Ravi AV. 2017. Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. J Med Microbiol. 66:1506–1515. doi:10.1099/jmm.0.000570
  • Kannappan A, Srinivasan R, Nivetha A, Annapoorani A, Pandian SK, Ravi AV. 2019b. Anti-virulence potential of 2-hydroxy-4-methoxybenzaldehyde against methicillin-resistant Staphylococcus aureus and its clinical isolates. App Microbiol Biotechnol. 103:6747–6758. doi:10.1007/s00253-019-09941-6
  • Kostakioti M, Hadjifrangiskou M, Hultgren SJ. 2013. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 3:a010306. doi:10.1101/cshperspect.a010306
  • Leejae S, Hasap L, Voravuthikunchai SP. 2013. Inhibition of staphyloxanthin biosynthesis in Staphylococcus aureus by rhodomyrtone, a novel antibiotic candidate. J Med Microbiol. 62:421–428. doi:10.1099/jmm.0.047316-0
  • Mathur T, Singhal S, Khan S, Upadhyay D, Fatma T, Rattan A. 2005. Adverse effect of staphylococci slime on in vitro activity of glycopeptides. Jpn J Infect Dis. 58:353–357.
  • Mishra G, Chandra HK, Sahu N, Nirala SK, Bhadauria M. 2018. Preliminarily phytochemical screening and in vivo safety evaluation of ethanolic extract of Hemidesmus indicus (Linn.). J Appl Pharm Sci. 8:72–79. doi:10.7324/JAPS.2018.81210
  • O’Gara JP. 2007. ica and beyond: Biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett. 270:179–188. doi:10.1111/j.1574-6968.2007.00688.x
  • Packiavathy IASV, Priya S, Pandian SK, Ravi AV. 2014. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa . Food Chem. 148:453–460. doi:10.1016/j.foodchem.2012.08.002
  • Prabakan M, Anandan R, Devaki T. 2000. Protective effect of Hemidesmus indicus against rifampicin and isoniazid-induced hepatotoxicity in rats. Fitoterapia. 71:55–59. doi:10.1016/S0367-326X(99)00120-3
  • Qin Z, Yang X, Yang L, Jiang J, Ou Y, Molin S, Qu D. 2007. Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol. 56:83–93. doi:10.1099/jmm.0.46799-0
  • Rajan S, Shalini R, Bharathi C, Aruna V, Elgin A, Brindha P. 2011. Pharmacognostical and phytochemical studies on Hemidesmus indicus root. Inter J Pharmacognosy Phytochem Res. 3:74–79. doi:10.1007/BF03046869
  • Ramanathan S, Arunachalam K, Chandran S, Selvaraj R, Shunmugiah KP, Arumugam VR. 2018a. Biofilm inhibitory efficiency of phytol in combination with cefotaxime against nosocomial pathogen Acinetobacter baumannii. J Appl Microbiol. 125:56–71. doi:10.1111/jam.13741
  • Ramanathan S, Ravindran D, Arunachalam K, Arumugam VR. 2018b. Inhibition of quorum sensing-dependent biofilm and virulence genes expression in environmental pathogen Serratia marcescens by petroselinic acid. Antonie Van Leeuwenhoek. 111:501–515. doi:10.1007/s10482-017-0971-y
  • Ravishankara MN, Shrivastava N, Padh H, Rajani M. 2002. Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine. 9:153–160. doi:10.1078/0944-7113-00104
  • Reiter KC, Sant’Anna FH, d’Azevedo PA. 2014. Upregulation of icaA, atlE and aap genes by linezolid but not vancomycin in Staphylococcus epidermidis RP62A biofilms. Int J Antimicrob Agents. 43:248–253. doi:10.1016/j.ijantimicag.2013.12.003
  • Rogers SA, Huigens RW, Cavanagh J, Melander C. 2010. Synergistic effects between conventional antibiotics and 2-aminoimidazole-derived antibiofilm agents. Antimicrob Agents Chemother. 54:2112–2118. doi:10.1128/AAC.01418-09
  • Roy R, Tiwari M, Donelli G, Tiwari V. 2018. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 9:522–554. doi:10.1080/21505594.2017.1313372
  • Saritha K, Rajesh A, Manjulatha K, Setty OH, Yenugu S. 2015. Mechanism of antibacterial action of the alcoholic extracts of Hemidesmus indicus (L.) R. Br. ex Schult, Leucas aspera (Wild.), Plumbago zeylanica L., and Tridax procumbens (L.) R. Br. ex Schult. Front Microbiol. 6:577.doi:10.3389/fmicb.2015.00577
  • Savijoki K, Iivanainen A, Siljamäki P, Laine PK, Paulin L, Karonen T, Pyörälä S, Kankainen M, Nyman TA, Salomäki T, et al. 2014. Genomics and proteomics provide new insight into the commensal and pathogenic lifestyles of bovine- and human-associated Staphylococcus epidermidis Strains. J Proteome Res. 13:3748–3762. doi:10.1021/pr500322d
  • Schmitt J, Flemming HC. 1998. FTIR-spectroscopy in microbial and material analysis. Int Biodeter Biodegr. 41:1–11. doi:10.1016/S0964-8305(98)80002-4
  • Sethupathy S, Vigneshwari L, Valliammai A, Balamurugan K, Pandian SK. 2017. l- Ascorbyl 2,6-dipalmitate inhibits biofilm formation and virulence in methicillin-resistant Staphylococcus aureus and prevents triacylglyceride accumulation in Caenorhabditis elegans. RSC Adv. 7:23392–23406. doi:10.1039/C7RA02934A
  • Singh R, Ray P, Das A, Sharma M. 2010. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 65:1955–1958. doi:10.1093/jac/dkq257
  • Sivaranjani M, Prakash M, Gowrishankar S, Rathna J, Pandian SK, Ravi AV. 2017. In vitro activity of alpha-mangostin in killing and eradicating Staphylococcus epidermidis RP62A biofilms. Appl Microbiol Biotechnol. 101:3349–3359. doi:10.1007/s00253-017-8231-7
  • Sivaranjani M, Srinivasan R, Aravindraja C, Pandian SK, Ravi AV. 2018. Inhibitory effect of α-mangostin on Acinetobacter baumannii biofilms - an in vitro study. Biofouling. 34:579–593. doi:10.1080/08927014.2018.1473387
  • Souli M, Giamarellou H. 1998. Effects of slime produced by clinical isolates of coagulase-negative staphylococci on activities of various antimicrobial agents. Antimicrob Agents Chemother. 42:939–941. doi:10.1128/AAC.42.4.939
  • Srikanta BM, Nayaka MAH, Dharmesh S. 2011. Inhibition of Helicobacter pylori growth and its cytotoxicity by 2-hydroxy 4-methoxy benzaldehyde of Decalepis hamiltonii (wight & arn); a new functional attribute. Biochimie. 93:678–688. doi:10.1016/j.biochi.2010.12.009
  • Srinivasan R, Devi KR, Kannappan A, Pandian SK, Ravi AV. 2016. Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro. J Ethnopharmacol. 193:592–603. doi:10.1016/j.jep.2016.10.017
  • Turrini E, Catanzaro E, Ferruzzi L, Guerrini A, Tacchini M, Sacchetti G, Paganetto G, Maffei F, Pellicioni V, Poli F, et al. 2019. Hemidesmus indicus induces apoptosis via proteasome inhibition and generation of reactive oxygen species. Sci Rep. 9:1–14. doi:10.1038/s41598-019-43609-5
  • Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. 2003. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol. 92:179–185. doi:10.1016/S0378-1135(02)00360-7
  • Wang J, Liu H, Zhao J, Gao H, Zhou L, Liu Z, Chen Y, Sui P. 2010. Antimicrobial and antioxidant activities of the root bark essential oil of Periploca sepium and its main component 2-hydroxy-4-methoxybenzaldehyde. Molecules. 15:5807–5817. doi:10.3390/molecules15085807
  • Widerström M. 2016. Commentary: significance of Staphylococcus epidermidis in health care-associated infections, from contaminant to clinically relevant pathogen: this is a wake-up call!. J Clin Microbiol. 54:1679–1681. doi:10.1128/JCM.00743-16
  • Yuan JS, Reed A, Chen F, Stewart CN. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics. 7:85. doi:10.1186/1471-2105-7-85
  • Zhang X, Wang L, Mu H, Wang D, Yu Y. 2019. Synergistic antibacterial effects of Buddleja albiflora metabolites with antibiotics against Listeria monocytogenes. Lett Appl Microbiol. 68:38–47. doi:10.1111/lam.13084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.