Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 6
513
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Characterization of planktonic and biofilm cells from two filamentous cyanobacteria using a shotgun proteomic approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 631-645 | Received 13 May 2020, Accepted 06 Jul 2020, Published online: 26 Jul 2020

References

  • Alexova R, Haynes PA, Ferrari BC, Neilan BA. 2011. Comparative protein expression in different strains of the bloom-forming cyanobacterium Microcystis aeruginosa. Mol Cell Proteom. 10:M110.003749. doi:10.1074/mcp.M110.003749
  • Allen AA, Habimana O, Casey E. 2018. The effects of extrinsic factors on the structural and mechanical properties of Pseudomonas fluorescens biofilms: a combined study of nutrient concentrations and shear conditions. Colloids Surf B Biointerf. 165:127–134. doi:10.1016/j.colsurfb.2018.02.035
  • Anderson DC, Campbell EL, Meeks JC. 2006. A soluble 3D LC/MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme. J Proteome Res. 5:3096–3104. doi:10.1021/pr060272m
  • Baba M, Suzuki I, Shiraiwa Y. 2011. Proteomic analysis of high-CO(2)-inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii. Plant Cell Physiol. 52:1302–1314. doi:10.1093/pcp/pcr078
  • Babele PK, Kumar J, Chaturvedi V. 2019. Proteomic de-regulation in cyanobacteria in response to abiotic stresses. Front Microbiol. 10:1–22. doi:10.3389/fmicb.2019.01315
  • Badger MR, Price GD. 2003. CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot. 54:609–622. doi:10.1093/jxb/erg076
  • Bakke R, Kommedal R, Kalvenes S. 2001. Quantification of biofilm accumulation by an optical approach. J Microbiol Methods. 44:13–26. doi:10.1016/S0167-7012(00)00236-0
  • Battchikova N, Muth-Pawlak D, Aro EM. 2018. Proteomics of cyanobacteria: current horizons. Curr Opin Biotechnol. 54:65–71. doi:10.1016/j.copbio.2018.02.012
  • Bharti A, Velmourougane K, Prasanna R. 2017. Phototrophic biofilms: diversity, ecology and applications. J Appl Phycol. 29:2729–2744. doi:10.1007/s10811-017-1172-9
  • Campos A, Danielsson G, Farinha AP, Kuruvilla J, Warholm P, Cristobal S. 2016. Shotgun proteomics to unravel marine mussel (Mytilus edulis) response to long-term exposure to low salinity and propranolol in a Baltic Sea microcosm. J Proteomics. 137:97–106. doi:10.1016/j.jprot.2016.01.010
  • Canny J. 1986. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell. 8:679–698. doi: 10.1109/TPAMI.1986.4767851.
  • Carvalho C. 2018. Marine biofilms: a successful microbial strategy with economic implications. Front Mar Sci. 5:1–11. doi:10.3389/fmars.2018.00126
  • Chen M, Hernandez-Prieto MA, Loughlin PC, Li Y, Willows RD. 2019. Genome and proteome of the chlorophyll f-producing cyanobacterium Halomicronema hongdechloris: adaptative proteomic shifts under different light conditions. BMC Genomics. 20:1–15. doi:10.1186/s12864-019-5587-3
  • Crawford RJ, Webb HK, Truong VK, Hasan J, Ivanova EP. 2012. Surface topographical factors influencing bacterial attachment. Adv Colloid Interface Sci. 179–182:142–149. doi:10.1016/j.cis.2012.06.015
  • Delauney L, Compère C, Lehaitre M. 2010. Biofouling protection for marine environmental sensors. Ocean Sci. 6:503–511. doi:10.5194/os-6-503-2010
  • Diaconu M, Kothe U, Schlünzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC. 2005. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTpase activation. Cell. 121:991–1004. doi:10.1016/j.cell.2005.04.015
  • Duda RO, Hart PE. 1972. Use of the Hough transformation to detect lines and curves in pictures. Commun Acm. 15:11–15. doi:10.1145/361237
  • Faria SI, Teixeira-Santos R, Romeu MJ, Morais J, Vasconcelos V, Mergulhão FJ. 2020. The relative importance of shear forces and surface hydrophobicity on biofilm formation by coccoid cyanobacteria. Polymers (Basel). 12:653. doi:10.3390/polym12030653
  • Favre L, Ortalo-Magné A, Pichereaux C, Gargaros A, Burlet-Schiltz O, Cotelle V, Culioli G. 2018. Metabolome and proteome changes between biofilm and planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica TC8. Biofouling. 34:132–148. doi:10.1080/08927014.2017.1413551
  • Flemming H-C, Murthy PS, Venkatesan R, Cooksey K. 2009. Marine and industrial biofouling. Costerton JW, editor. Los Angeles: Springer Berlin Heidelberg.
  • Heidari F, Hauer T, Zima J, Riahi H. 2018. New simple trichal cyanobacterial taxa isolated from radioactive thermal springs. Fottea. 18:137–149. doi:10.5507/fot.2017.024
  • Herschend J, Damholt ZBV, Marquard AM, Svensson B, Sørensen SJ, Hägglund P, Burmølle M. 2017. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Sci Rep. 7:1–13. doi:10.1038/s41598-017-16633-6
  • Huang F, Parmryd I, Nilsson F, Persson AL, Pakrasi HB, Andersson B, Norling B. 2002. Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. Mol Cell Proteom. 1:956–966. doi:10.1074/mcp.m200043-mcp200
  • Jahn M, Vialas V, Karlsen J, Maddalo G, Edfors F, Forsström B, Uhlén M, Käll L, Hudson EP. 2018. Growth of cyanobacteria is constrained by the abundance of light and carbon assimilation proteins. Cell Rep. 25:478–486.e8. doi:10.1016/j.celrep.2018.09.040
  • King RK, Flick GJ, Smith SA, Pierson MD, Boardman GD, Coale CW. 2006. Comparison of bacterial presence in biofilms on different materials commonly found in recirculating aquaculture systems. J Appl Aquac. 18:79–88. doi:10.1300/J028v18n01_05
  • Kotai J. 1972. Instructions for the preparation of modified nutrient solution Z8 for algae. Blindern, Oslo: Norwegian Institute for Water Research; vol. 11, p. 5.
  • Kurdrid P, Senachak J, Sirijuntarut M, Yutthanasirikul R, Phuengcharoen P, Jeamton W, Roytrakul S, Cheevadhanarak S, Hongsthong A. 2011. Comparative analysis of the Spirulina platensis subcellular proteome in response to low- and high-temperature stresses: uncovering cross-talk of signaling components. Proteome Sci. 9:39. doi:10.1186/1477-5956-9-39
  • Lau NS, Matsui M, Abdullah AA. 2015. Cyanobacteria: photoautotrophic microbial factories for the sustainable synthesis of industrial products. Biomed Res Int. 2015:754934. doi:10.1155/2015/754934
  • Leary DH, Li RW, Hamdan LJ, Hervey WJ, Lebedev N, Wang Z, Deschamps JR, Kusterbeck AW, Vora GJ. 2014. Integrated metagenomic and metaproteomic analyses of marine biofilm communities. Biofouling. 30:1211–1223. doi:10.1080/08927014.2014.977267
  • Liao Y, Williams TJ, Ye J, Charlesworth J, Burns BP, Poljak A, Raftery MJ, Cavicchioli R. 2016. Morphological and proteomic analysis of biofilms from the Antarctic archaeon. Sci Rep. 6:37454. doi:10.1038/srep3745
  • Lv J, Li N, Niu DK. 2008. Association between the availability of environmental resources and the atomic composition of organismal proteomes: evidence from Prochlorococcus strains living at different depths. Biochem Biophys Res Commun. 375:241–246. doi:10.1016/j.bbrc.2008.08.011
  • MacColl R. 1998. Cyanobacterial phycobilisomes. J Struct Biol. 124:311–334. doi:10.1006/jsbi.1998.4062
  • Manirafasha E, Ndikubwimana T, Zeng X, Lu Y, Jing K. 2016. Phycobiliprotein: potential microalgae derived pharmaceutical and biological reagent. Biochem Eng J. 109:282–296. doi:10.1016/j.bej.2016.01.025
  • Mayer MA, Borsdorf A, Wagner M, Hornegger J, Mardin CY, Tornow RP. 2012. Wavelet denoising of multiframe optical coherence tomography data. Biomed Opt Express. 3:572–589. doi:10.1364/BOE.3.000572
  • Mieszkin S, Callow ME, Callow JA. 2013. Interactions between microbial biofilms and marine fouling algae: a mini review. Biofouling. 29:1097–1113. doi:10.1080/08927014.2013.828712
  • Moreira JMR, Gomes LC, Simões M, Melo LF, Mergulhão FJ. 2015. The impact of material properties, nutrient load and shear stress on biofouling in food industries. Food Bioprod Process. 95:228–236. doi:10.1016/j.fbp.2015.05.011
  • Muthusamy S, Lundin D, Mamede Branca RM, Baltar F, González JM, Lehtiö J, Pinhassi J. 2017. Comparative proteomics reveals signature metabolisms of exponentially growing and stationary phase marine bacteria. Environ Microbiol. 19:2301–2319. doi:10.1111/1462-2920.13725
  • Nelson N, Yocum CF. 2006. Structure and function of photosystems I and II. Annu Rev Plant Biol. 57:521–565. doi:10.1146/annurev.arplant.57.032905.105350
  • Otsuka S, Suda S, Shibata S, Oyaizu H, Matsumoto S, Watanabe MM. 2001. A proposal for the unification of five species of the cyanobacterial genus Microcystis Kützing ex Lemmermann 1907 under the rules of the Bacteriological Code. Int J Syst Evol Microbiol. 51:873–879. doi:10.1099/00207713-51-3-873
  • Ow SY, Salim M, Noirel J, Evans C, Wright PC. 2011. Minimising iTRAQ ratio compression through understanding LC-MS elution dependence and high-resolution HILIC fractionation. Proteomics. 11:2341–2346. doi:10.1002/pmic.201000752
  • Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. 2019. Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnol Adv. 37:422–443. doi:10.1016/j.biotechadv.2019.02.010
  • Pandhal J, Ow SY, Wright PC, Biggs CA. 2009. Comparative proteomics study of salt tolerance between a nonsequenced extremely halotolerant cyanobacterium and its mildly halotolerant relative using in vivo metabolic labeling and in vitro isobaric labeling. J Proteome Res. 8:818–828. doi:10.1021/pr800283q
  • Parnasa R, Nagar E, Sendersky E, Reich Z, Simkovsky R, Golden S, Schwarz R. 2016. Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus. Sci Rep. 6:32209. doi:10.1038/srep32209
  • Perkerson Iii RB, Johansen JR, Kováčik L, Brand J, Kaštovský J, Casamatta DA. 2011. A unique pseudanabaenalean (Cyanobacteria) genus Nodosilinea gen. nov. based on morphological and molecular DATA(1). J Phycol. 47:1397–1412. doi:10.1111/j.1529-8817.2011.01077.x
  • Pisareva T, Shumskaya M, Maddalo G, Ilag L, Norling B. 2007. Proteomics of Synechocystis sp. PCC 6803. Identification of novel integral plasma membrane proteins. Febs J. 274:791–804. doi:10.1111/j.1742-4658.2006.05624.x
  • Porra R, Thompson W, Kriedemann P. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta. 975:384–394. doi:10.1016/S0005-2728(89)80347-0
  • Qayyum S, Sharma D, Bisht D, Khan AU. 2016. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis: a proteomic approach. Biochem Biophys Res Commun. 474:652–659. doi:10.1016/j.bbrc.2016.04.145
  • Radzi R, Muangmai N, Broady P, Wan Omar WM, Lavoue S, Convey P, Merican F. 2019. Nodosilinea signiensis sp. nov. (Leptolyngbyaceae, Synechococcales), a new terrestrial cyanobacterium isolated from mats collected on Signy Island, South Orkney Islands, Antarctica. PLoS One. 14:e0224395. doi:10.1371/journal.pone.0224395
  • Ramos V, Morais J, Castelo-Branco R, Pinheiro Â, Martins J, Regueiras A, Pereira AL, Lopes VR, Frazão B, Gomes D, et al. 2018. Cyanobacterial diversity held in microbial biological resource centers as a biotechnological asset: the case study of the newly established LEGE culture collection. J Appl Phycol. 30:1437–1451. doi:10.1007/s10811-017-1369-y
  • Romeu MJ, Alves P, Morais J, Miranda JM, de Jong ED, Sjollema J, Ramos V, Vasconcelos V, Mergulhão F. 2019. Biofilm formation behaviour of marine filamentous cyanobacterial strains in controlled hydrodynamic conditions. Environ Microbiol. 21:4411–4424. doi:10.1111/1462-2920.14807
  • Slabas AR, Suzuki I, Murata N, Simon WJ, Hall JJ. 2006. Proteomic analysis of the heat shock response in Synechocystis PCC6803 and a thermally tolerant knockout strain lacking the histidine kinase 34 gene. Proteomics. 6:845–864. doi:10.1002/pmic.200500196
  • Sonani RR, Gupta GD, Madamwar D, Kumar V. 2015. Crystal structure of allophycocyanin from marine cyanobacterium Phormidium sp. Plos One. 10:e0124580. doi:10.1371/journal.pone.0124580
  • Sun T, Li S, Song X, Diao J, Chen L, Zhang W. 2018. Toolboxes for cyanobacteria: recent advances and future direction. Biotechnol Adv. 36:1293–1307. doi:10.1016/j.biotechadv.2018.04.007
  • Taylor DA. 1996. Introduction to marine engineering. Burlington, MA: Butterworth-Heinemann.
  • Telegdi J, Trif L, Románszki L. 2016. Smart anti-biofouling composite coatings for naval applications. In: Montemor MF, editor. Smart composite coatings and membranes transport, structural, environmental and energy applications. Cambridge, UK: Woodhead Publishing; p. 123–155.
  • Teodósio JS, Simões M, Melo LF, Mergulhão FJ. 2011. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow. Biofouling. 27:1–11. doi:10.1080/08927014.2010.535206
  • Vázquez-Martínez J, Gutierrez-Villagomez JM, Fonseca-García C, Ramírez-Chávez E, Mondragón-Sánchez ML, Partida-Martínez L, Johansen JR, Molina-Torres J. 2018. Nodosilinea chupicuarensis sp. nov. (Leptolyngbyaceae, Synechococcales) a subaerial cyanobacterium isolated from a stone monument in central Mexico. Phytotaxa. 334:167. doi:10.11646/phytotaxa.334.2.6
  • Wang N, Sadiq FA, Li S, He G, Yuan L. 2020. Tandem mass tag-based quantitative proteomics reveals the regulators in biofilm formation and biofilm control of Bacillus licheniformis. Food Control. 110:107029. doi:10.1016/j.foodcont.2019.107029
  • Wang Y, Stessman DJ, Spalding MH. 2015. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J. 82:429–448. doi:10.1111/tpj.12829
  • Wiśniewski JR, Zougman A, Nagaraj N, Mann M. 2009. Universal sample preparation method for proteome analysis. Nat Methods. 6:359–362. doi:10.1038/nmeth.1322
  • Wood ZA, Schröder E, Harris JR, Poole LB. 2003. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 28:32–40. doi:10.1016/S0968-0004(02)00003-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.