Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 6
826
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Effects of crosslink density in zwitterionic hydrogel coatings on their antifouling performance and susceptibility to silt uptake

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 646-659 | Received 04 May 2020, Accepted 12 Jul 2020, Published online: 27 Jul 2020

References

  • Aldred N, Li G, Gao Y, Clare AS, Jiang S. 2010. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings. Biofouling. 26:673–683. doi:10.1080/08927014.2010.506677
  • Baier RE. 2006. Surface behaviour of biomaterials: the theta surface for biocompatibility. J Mater Sci Mater Med. 17:1057–1062. doi:10.1007/s10856-006-0444-8
  • Bauer S, Arpa-Sancet MP, Finlay JA, Callow ME, Callow JA, Rosenhahn A. 2013. Adhesion of marine fouling organisms on hydrophilic and amphiphilic polysaccharides. Langmuir. 29:4039–4047. doi:10.1021/la3038022
  • Berg JM, Eriksson LGT, Claesson PM, Borve K. 1994. Three-component Langmuir-Blodgett films with a controllable degree of polarity. Langmuir. 10:1225–1234. doi:10.1021/la00016a041
  • Brady RF, Singer IL. 2000. Mechanical factors favoring release from fouling release coatings. Biofouling. 15:73–81. doi:10.1080/08927010009386299
  • Buller J, Laschewsky A, Wischerhoff E. 2013. Photoreactive oligoethylene glycol polymers – versatile compounds for surface modification by thin hydrogel films. Soft Matter. 9:929–937. doi:10.1039/C2SM26879E
  • Callow JA, Callow ME. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2:244. doi:10.1038/ncomms1251
  • Callow ME, Callow JA. 2002. Marine biofouling: a sticky problem. Biologist. 49:1–5.
  • Chen S, Jiang S. 2008. A new avenue to nonfouling materials. Adv Mater. 20:335–338. doi:10.1002/adma.200701164
  • Ciriminna R, Bright FV, Pagliaro M. 2015. Ecofriendly antifouling marine coatings. ACS Sustain Chem Eng. 3:559–565. doi:10.1021/sc500845n
  • Colak S, Tew GN. 2012. Amphiphilic polybetaines: the effect of side-chain hydrophobicity on protein adsorption. Biomacromolecules. 13:1233–1239. doi:10.1021/bm201791p
  • Dehghani ES, Spencer ND, Ramakrishna SN, Benetti EM. 2016. Crosslinking polymer brushes with ethylene glycol-containing segments: influence on physicochemical and antifouling properties. Langmuir. 32:10317–10327. doi:10.1021/acs.langmuir.6b02958
  • Ederth T, Ekblad T, Pettitt ME, Conlan SL, Du C-X, Callow ME, Callow JA, Mutton R, Clare AS, D’Souza F, et al. 2011. Resistance of galactoside-terminated alkanethiol self-assembled monolayers to marine fouling organisms. ACS Appl Mater Interfaces. 3:3890–3901. doi:10.1021/am200726a
  • Galhenage TP, Hoffman D, Silbert SD, Stafslien SJ, Daniels J, Miljkovic T, Finlay JA, Franco SC, Clare AS, Nedved BT, et al. 2016. Fouling-release performance of silicone oil-modified siloxane-polyurethane coatings. ACS Appl Mater Interfaces. 8:29025–29036. doi:10.1021/acsami.6b09484
  • Gudipati CS, Greenlief CM, Johnson JA, Prayongpan P, Wooley KL. 2004. Hyperbranched fluoropolymer and linear poly(ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: an insight into the surface compositions, topographies, and morphologies. J Polym Sci A Polym Chem. 42:6193–6208. doi:10.1002/pola.20466
  • He H, Xuan X, Zhang C, Song Y, Chen S, Gong X, Ren B, Zheng J, Wu J. 2019. Simple thermal pretreatment strategy to tune mechanical and antifouling properties of zwitterionic hydrogels. Langmuir. 35:1828–1836. doi:10.1021/acs.langmuir.8b01755
  • Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM. 2001. Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir. 17:2841–2850. doi:10.1021/la0015258
  • Imbesi PM, Finlay JA, Aldred N, Eller MJ, Felder SE, Pollack KA, Lonnecker AT, Raymond JE, Mackay ME, Schweikert EA, et al. 2012. Targeted surface nanocomplexity: two-dimensional control over the composition, physical properties and anti-biofouling performance of hyperbranched fluoropolymer-poly(ethylene glycol) amphiphilic crosslinked networks. Polym Chem. 3:3121–3131. doi:10.1039/c2py20317k
  • Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N. 1998. Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res. 39:323–330. doi:10.1002/(SICI)1097-4636(199802)39:2<323::AID-JBM21>3.0.CO;2-C
  • Jain P, Hung HC, Lin X, Ma J, Zhang P, Sun F, Wu K, Jiang S. 2017. Poly(ectoine) hydrogels resist nonspecific protein adsorption. Langmuir. 33:11264–11269. doi:10.1021/acs.langmuir.7b02434
  • Jakobi V, Schwarze J, Finlay JA, Nolte KA, Spöllmann S, Becker HW, Clare AS, Rosenhahn A. 2018. Amphiphilic alginates for marine antifouling applications. Biomacromolecules. 19:402–408. doi:10.1021/acs.biomac.7b01498
  • Jiang S, Cao ZZ. 2010. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater Weinheim. 22:920–932. doi:10.1002/adma.200901407
  • Kardela JH, Millichamp IS, Ferguson J, Parry AL, Reynolds KJ, Aldred N, Clare AS. 2019. Nonfreezable water and polymer swelling control the marine antifouling performance of polymers with limited hydrophilic content. ACS Appl Mater Interfaces. 11:29477–29489. doi:10.1021/acsami.9b05893
  • Kasák P, Kroneková Z, Krupa I, Lacík I. 2011. Zwitterionic hydrogels crosslinked with novel zwitterionic crosslinkers: synthesis and characterization. Polymer. 52:3011–3020. doi:10.1016/j.polymer.2011.04.056
  • Kendall K. 1971. The adhesion and surface energy of elastic solids. J Phys D Appl Phys. 4:1186–1195. doi:10.1088/0022-3727/4/8/320
  • Kim J, Somorjai GA. 2003. Molecular packing of lysozyme, fibrinogen, and bovine serum albumin on hydrophilic and hydrophobic surfaces studied by infrared-visible sum frequency generation and fluorescence microscopy. J Am Chem Soc. 125:3150–3158. doi:10.1021/ja028987n
  • Koc J, Schönemann E, Amuthalingam A, Clarke J, Finlay JA, Clare AS, Laschewsky A, Rosenhahn A. 2019. Low-fouling thin hydrogel coatings made of photo-cross-linked polyzwitterions. Langmuir. 35:1552–1562. doi:10.1021/acs.langmuir.8b02799
  • Koc J, Simovich T, Schönemann E, Chilkoti A, Gardner H, Swain GW, Hunsucker K, Laschewsky A, Rosenhahn A. 2019. Sediment challenge to promising ultra-low fouling hydrophilic surfaces in the marine environment. Biofouling. 35:454–462. doi:10.1080/08927014.2019.1611790
  • Krishnan S, Ayothi R, Hexemer A, Finlay JA, Sohn KE, Perry R, Ober CK, Kramer EJ, Callow ME, Callow JA, et al. 2006. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir. 22:5075–5086. doi:10.1021/la052978l
  • Laschewsky A, Rekaï ED, Wischerhoff E. 2001. Tailoring of stimuli-responsive water soluble acrylamide and methacrylamide polymers. Macromol Chem Phys. 202:276–286. doi:10.1002/1521-3935(20010101)202:2<276::AID-MACP276>3.0.CO;2-1
  • Laschewsky A, Rosenhahn A. 2019. Molecular design of zwitterionic polymer interfaces: searching for the difference. Langmuir. 35:1056–1071. doi:10.1021/acs.langmuir.8b01789
  • Lin X, Boit MO, Wu K, Jain P, Liu EJ, Hsieh Y-F, Zhou Q, Li B, Hung H-C, Jiang S. 2020. Zwitterionic carboxybetaine polymers extend the shelf-life of human platelets. Acta Biomater. 109:51–60. doi:10.1016/j.actbio.2020.03.032
  • Lundberg P, Bruin A, Klijnstra JW, Nyström AM, Johansson M, Malkoch M, Hult A. 2010. Poly(ethylene glycol)-based thiol-ene hydrogel coatings-curing chemistry, aqueous stability, and potential marine antifouling applications. ACS Appl Mater Interfaces. 2:903–912. doi:10.1021/am900875g
  • Münch AS, Adam S, Fritzsche T, Uhlmann P. 2020. Tuning of smart multifunctional polymer coatings made by zwitterionic phosphorylcholines. Adv Mater Interfaces. 7:1901422. doi:10.1002/admi.201901422
  • Nolte KA, Koc J, Barros JM, Hunsucker K, Schultz MP, Swain GE, Rosenhahn A. 2018. Dynamic field testing of coating chemistry candidates by a rotating disk system. Biofouling. 34:398–312. doi:10.1080/08927014.2018.1459578
  • Nolte KA, Schwarze J, Beyer CD, Özcan O, Rosenhahn A, Nolte KA, Schwarze J, Beyer D, Özcan O. 2018. Parallelized microfluidic diatom accumulation assay to test fouling-release coatings. Biointerphases. 13:041007. doi:10.1116/1.5034090
  • Nolte KA, Schwarze J, Rosenhahn A. 2017. Microfluidic accumulation assay probes attachment of biofilm forming diatom cells. Biofouling. 33:531–543. doi:10.1080/08927014.2017.1328058
  • Pandiyarajan CK, Prucker O, Rühe J. 2016. Humidity driven swelling of the surface-attached poly(N-alkylacrylamide) hydrogels. Macromolecules. 49:8254–8264. doi:10.1021/acs.macromol.6b01379
  • Park D, Weinman CJ, Finlay JA, Fletcher BR, Paik MY, Sundaram HS, Dimitriou MD, Sohn KE, Callow ME, Callow JA, et al. 2010. Amphiphilic surface active triblock copolymers with mixed hydrophobic and hydrophilic side chains for tuned marine fouling-release properties. Langmuir. 26:9772–9781. doi:10.1021/la100032n
  • Paschke S, Lienkamp K. 2020. Polyzwitterions: from surface properties and bioactivity profiles to biomedical applications. ACS Appl Polym Mater. 2:129–151. doi:10.1021/acsapm.9b00897
  • Petrone L, Lee SSC, Teo SLM, Birch WR. 2013. A novel geometry for a laboratory-based larval settlement assay. Biofouling. 29:213–221. doi:10.1080/08927014.2012.762643
  • Prucker O, Brandstetter T, Rühe J. 2018. Surface-attached hydrogel coatings via C,H-insertion crosslinking for biomedical and bioanalytical applications (Review). Biointerphases. 13:010801. doi:10.1116/1.4999786
  • Ren PF, Yang HC, Liang HQ, Xu XL, Wan LS, Xu ZK. 2015. Highly stable, protein-resistant surfaces via the layer-by-layer assembly of poly(sulfobetaine methacrylate) and tannic acid. Langmuir. 31:5851–5858. doi:10.1021/acs.langmuir.5b00920
  • Riga E, Saar J, Erath R, Hechenbichler M, Lienkamp K. 2017. On the limits of benzophenone as cross-linker for surface-attached polymer hydrogels. Polymers. 9:686. doi:10.3390/polym9120686
  • Rosenhahn A, Schilp S, Kreuzer HJ, Grunze M. 2010. The role of “inert” surface chemistry in marine biofouling prevention. Phys Chem Chem Phys. 12:4275–4286. doi:10.1039/c001968m
  • Schlenoff JB. 2014. Zwitteration: coating surfaces with zwitterionic functionality to reduce nonspecific adsorption. Langmuir. 30:9625–9636. doi:10.1021/la500057j
  • Schönemann E, Koc J, Aldred N, Clare AS, Laschewsky A, Rosenhahn A, Wischerhoff E. 2020. Synthesis of novel sulfobetaine polymers with differing dipole orientations in their side chains, and their effects on the antifouling properties. Macromol Rapid Commun. 41:1900447. doi:10.1002/marc.201900447
  • Schönemann E, Laschewsky A, Rosenhahn A. 2018. Exploring the long-term hydrolytic behavior of zwitterionic polymethacrylates and polymethacrylamides. Polymers. 10:639. doi:10.3390/polym10060639
  • Schönemann E, Laschewsky A, Wischerhoff E, Koc J, Rosenhahn A. 2019. Surface modification by polyzwitterions of the sulfabetaine-type, and their resistance to biofouling. Polymers. 11:1014. doi:10.3390/polym11061014
  • Seetho K, Zhang S, Pollack KA, Zou J, Raymond JE, Martinez E, Wooley KL. 2015. Facile synthesis of a phosphorylcholine-based zwitterionic amphiphilic copolymer for anti-biofouling coatings. ACS Macro Lett. 4:505–510. doi:10.1021/mz500818c
  • Sigal GB, Mrksich M, Whitesides GM. 1998. Effect of surface wettability on the adsorption of proteins and detergents. J Am Chem Soc. 120:3464–3473. doi:10.1021/ja970819l
  • Ventura C, Guerin AJ, El-Zubir O, Ruiz-Sanchez AJ, Dixon LI, Reynolds KJ, Dale ML, Ferguson J, Houlton A, Horrocks BR, et al. 2017. Marine antifouling performance of polymer coatings incorporating zwitterions. Biofouling. 33:892–903. doi:10.1080/08927014.2017.1383983
  • Vogler EA. 1998. Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interface Sci. 74:69–117. doi:10.1016/S0001-8686(97)00040-7
  • Wang J, Wei J. 2016. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling. Appl Surf Sci. 382:202–216. doi:10.1016/j.apsusc.2016.03.223
  • Wang P, Meng J, Xu M, Yuan T, Yang N, Sun T, Zhang Y, Feng X, Cheng B. 2015. A simple but efficient zwitterionization method towards cellulose membrane with superior antifouling property and biocompatibility. J Membr Sci. 492:547–558. doi:10.1016/j.memsci.2015.06.024
  • Wang Z, Van Andel E, Pujari SP, Feng H, Dijksman JA, Smulders MMJ, Zuilhof H. 2017. Water-repairable zwitterionic polymer coatings for anti-biofouling surfaces. J Mater Chem B. 5:6728–6733. doi:10.1039/c7tb01178d
  • Wanka R, Aldred N, Finlay JA, Amuthalingam A, Clarke JL, Clare AS, Rosenhahn A. 2019. Antifouling properties of dendritic polyglycerols against marine macrofouling organisms. Langmuir. 35:16568–16575. doi:10.1021/acs.langmuir.9b02720
  • Wanka R, Finlay JA, Nolte KA, Koc J, Jakobi V, Anderson C, Clare AS, Gardner H, Hunsucker KZ, Swain GW, et al. 2018. Fouling-release properties of dendritic polyglycerols against marine diatoms. ACS Appl Mater Interfaces. 10:34965–34973. doi:10.1021/acsami.8b12017
  • Yang W, Bai T, Carr LR, Keefe AJ, Xu J, Xue H, Irvin CA, Chen S, Wang J, Jiang S. 2012. The effect of lightly crosslinked poly(carboxybetaine) hydrogel coating on the performance of sensors in whole blood. Biomaterials. 33:7945–7951. doi:10.1016/j.biomaterials.2012.07.035
  • Yoshikawa C, Delalat B, Huang F, Braun S, Nishijima N, Voelcker NH, Kingshott P, Thissen H. 2019. Photo-crosslinked coatings based on 2-hydroxypropyl acrylamide for the prevention of biofouling. J Mater Chem B. 7:3520–3527. doi:10.1039/C9TB00044E
  • Yu L, Hou Y, Cheng C, Schlaich C, Noeske P-L, Wei Q, Haag R. 2017. High-antifouling polymer brush coatings on nonpolar surfaces via adsorption-cross-linking strategy. ACS Appl Mater Interfaces. 9:44281–44292. doi:10.1021/acsami.7b13515
  • Yu X, Liu Z, Janzen J, Chafeeva I, Horte S, Chen W, Kainthan RK, Kizhakkedathu JN, Brooks DE. 2012. Polyvalent choline phosphate as a universal biomembrane adhesive. Nat Mater. 11:468–476. doi:10.1038/nmat3272
  • Zhang W, Li G, Lin Y, Wang L, Wu S. 2017. Preparation and characterization of protein-resistant hydrogels for soft contact lens applications via radical copolymerization involving a zwitterionic sulfobetaine comonomer. J Biomater Sci Polym Ed. 28:1935–1949. doi:10.1080/09205063.2017.1363127
  • Zhang Z, Finlay JA, Wang L, Gao Y, Callow JA, Callow ME, Jiang S. 2009. Polysulfobetaine-grafted surfaces as environmentally benign ultralow fouling marine coatings. Langmuir. 25:13516–13521. doi:10.1021/la901957k
  • Zhao W, Ye Q, Hu H, Wang X, Zhou F. 2014. Grafting zwitterionic polymer brushes via electrochemical surface-initiated atomic-transfer radical polymerization for anti-fouling applications. J Mater Chem B. 2:5352–5357. doi:10.1039/c4tb00816b

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.