Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 7
292
Views
15
CrossRef citations to date
0
Altmetric
Articles

A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus

, , , , , , & show all
Pages 753-765 | Received 20 Mar 2020, Accepted 04 Aug 2020, Published online: 26 Aug 2020

References

  • Allen PM, Fisher D, Saunders JR, Hart CA. 1987. The role of capsular polysaccharide K21b of Klebsiella and of the structurally related colanic-acid polysaccharide of Escherichia coli in resistance to phagocytosis and serum killing . J Med Microbiol. 24:363–370. doi:10.1099/00222615-24-4-363
  • Bao WY, Yang JL, Satuito CG, Kitamura H. 2007. Larval metamorphosis of the mussel Mytilus galloprovincialis in response to Alteromonas sp. 1: evidence for two chemical cues? Mar Biol. 152:657–666. doi:10.1007/s00227-007-0720-2
  • Baraquet C, Harwood CS. 2013. Cyclic di-guanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc Natl Acad Sci USA. 110:18478–18483. doi:10.1073/pnas.1318972110
  • Bobrov AG, Kirillina O, Ryjenkov DA, Waters CM, Price PA, Fetherston JD, Mack D, Goldman WE, Gomelsky M, Perry RD. 2011. Systematic analysis of cyclic di-GMP signalling enzymes and their role in biofilm formation and virulence in Yersinia pestis. Mol Microbiol. 79:533–551. doi:10.1111/j.1365-2958.2010.07470.x
  • Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U. 2010. Second messenger-mediated adjustment of bacterial swimming velocity. Cell. 141:107–116. doi:10.1016/j.cell.2010.01.018
  • Chamberlin ME. 2007. Changes in mitochondrial electron transport chain activity during insect metamorphosis. Am J Physiol Regul Integr Comp Physiol. 292:R1016–R1022. doi:10.1152/ajpregu.00553.2006
  • Chang YQ. 2007. Stock enhancement and culture in mollusks. 1st ed. Beijing (China): China Agriculture Press; 367p. (in Chinese).
  • Chua SL, Hultqvist LD, Yuan M, Rybtke M, Nielsen TE, Givskov M, Tolker-Nielsen T, Yang L. 2015. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation. Nat Protoc. 10:1165–1180. doi:10.1038/nprot.2015.067
  • Coetser SE, Cloete TE. 2005. Biofouling and biocorrosion in industrial water systems. Crit Rev Microbiol. 31:213–232. doi:10.1080/10408410500304074
  • Dahms HU, Dobretsov S, Qian PY. 2004. The effect of bacterial and diatom biofilms on the settlement of the bryozoans Bugula neritina. J Exp Mar Biol Ecol. 313:191–209. doi:10.1016/j.jembe.2004.08.005
  • Davis NJ, Cohen Y, Sanselicio S, Fumeaux C, Ozaki S, Luciano J, Guerrero-Ferreira RC, Wright ER, Jenal U, Viollier PH. 2013. De- and repolarization mechanism of flagellar morphogenesis during a bacterial cell cycle. Genes Dev. 27:2049–2062. doi:10.1101/gad.222679.113
  • Dehio C, Meyer M. 1997. Maintenance of broad-host-range incompatibility group P and group Q plasmids and transposition of Tn5 in Bartonella henselae following conjugal plasmid transfer from Escherichia coli. J Bacteriol. 179:538–540. doi:10.1128/jb.179.2.538-540.1997
  • Dobretsov S, Rittschof D. 2020. Love at first taste: induction of larval settlement by marine microbes. IJMS. 21:731. doi:10.3390/ijms21030731
  • Dunne WM. 2002. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev. 15:155–166. doi:10.1128/cmr.15.2.155-166.2002
  • Fitridge I, Dempster T, Guenther J, de Nys R. 2012. The impact and control of biofouling in marine aquaculture: a review. Biofouling. 28:649–669. doi:10.1080/08927014.2012.700478
  • Goebel WF. 1963. Colanic acid. Proc Natl Acad Sci USA. 49:464–471. doi:10.1073/pnas.49.4.464
  • González-Machado C, Capita R, Riesco-Peláez F, Alonso-Calleja C. 2018. Visualization and quantification of the cellular and extracellular components of Salmonella agona biofilms at different stages of development. PLoS One. 13:e0200011. doi:10.1371/journal.pone.0200011
  • Guo H, Lokko K, Zhang Y, Yi W, Wu Z, Wang PG. 2006. Overexpression and characterization of Wzz of Escherichia coli O86:H2. Protein Expr Purif. 48:49–55. doi:10.1016/j.pep.2006.01.015
  • Ha D-G, O’Toole GA. 2015. C-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol Spectr. 3:26104694. doi:10.1128/microbiolspec.MB-0003-2014
  • Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Ann Rev Mar Sci. 3:453–470. doi:10.1146/annurev-marine-120709-142753
  • Hadfield MG, Paul VG. 2001. Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae. In: McClintock JB, Baker JB, editors. Marine chemical ecology. Boca Raton (FL): CRC Press; p. 431–461.
  • Han B, Sivaramakrishnan P, Lin C-CJ, Neve IAA, He J, Tay LWR, Sowa JN, Sizovs A, Du G, Wang J, et al. 2017. Microbial genetic composition tunes host longevity. Cell. 169:1249–1262. doi:10.1016/j.cell.2017.05.036
  • Hickman JW, Tifrea DF, Harwood CS. 2005. A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels. Proc Natl Acad Sci USA. 102:14422–14427. doi:10.1073/pnas.0507170102
  • Hoffman MD, Zucker LI, Brown PJB, Kysela DT, Brun YV, Jacobson SC. 2015. Timescales and frequencies of reversible and irreversible adhesion events of single bacterial cells. Anal Chem. 87:12032–12039. doi:10.1021/acs.analchem.5b02087
  • Holm ER. 2012. Barnacles and biofouling. Integr Comp Biol. 52:348–355. doi:10.1093/icb/ics042
  • Jaeckle WB, Manahan DT. 1989. Growth and energy imbalance during the development of a lecithotrophic molluscan larva (Haliotis rufescens). Biol Bull. 177:231–246. doi:10.2307/1541939
  • Jenal U, Reinders A, Lori C. 2017. Cyclic di-GMP: second messenger extraordinaire. Nat Rev Microbiol. 15:271–284. doi:10.1038/nrmicro.2016.190
  • Khandeparker L, Anil AC, Raghukumar S. 2003. Barnacle larval destination: piloting possibilities by bacteria and lectin interaction. J Exp Mar Biol Ecol. 289:1–13. doi:10.1016/S0022-0981(03)00024-8
  • Kirchman D, Graham S, Reish D, Mitchell R. 1982. Lectins may mediate the settlement and metamorphosis of Janua (Dexiospira) brasiliensis Grube (Polychaeta: Spirorbidae). Mar Biol Lett. 3:131–142.
  • Krasteva PV, Fong JCN, Shikuma NJ, Beyhan S, Navarro MVAS, Yildiz FH, Sondermann H. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science. 327:866–868. doi:10.1126/science.1181185
  • Lam C, Harder T, Qian PY. 2003. Induction of larval settlement in the polychaete Hydroides elegans by surface-associated settlement cues of marine benthic diatoms. Mar Ecol Prog Ser. 263:83–92. doi:10.3354/meps263083
  • Liang X, Zhang XK, Peng LH, Zhu YT, Yoshida A, Osatomi K, Yang JL. 2020. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis. IJMS. 21:710. doi:10.3390/ijms21030710
  • Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. 3:MB-0011-2014.
  • Llorens JV, Metzendorf C, Missirlis F, Lind MI. 2015. Mitochondrial iron supply is required for the developmental pulse of ecdysone biosynthesis that initiates metamorphosis in Drosophila melanogaster. J Biol Inorg Chem. 20:1229–1238. doi:10.1007/s00775-015-1302-2
  • Majdalani N, Gottesman S. 2005. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol. 59:379–405. doi:10.1146/annurev.micro.59.050405.101230
  • Matsumura K, Mori S, Nagano M, Fusetani N. 1998. Lentil lectin inhibits adult extract-induced settlement of the barnacle, Balanus amphitrite. J Exp Zool. 280:213–219. doi:10.1002/(SICI)1097-010X(19980215)280:3<213::AID-JEZ2>3.0.CO;2-Q
  • Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MVAS. 2016. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 113:E209–E218. doi:10.1073/pnas.1523148113
  • Meng Y, Li C, Li H, Shih K, He C, Yao H, Thiyagarajan V. 2019. Recoverable impacts of ocean acidification on the tubeworm, Hydroides elegans: implication for biofouling in future coastal oceans. Biofouling. 35:945–957. doi:10.1080/08927014.2019.1673376
  • Morona JK, Paton JC, Miller DC, Morona R. 2000. Tyrosine phosphorylation of CpsD negatively regulates capsular polysaccharide biosynthesis in Streptococcus pneumoniae. Mol Microbiol. 35:1431–1442. doi:10.1046/j.1365-2958.2000.01808.x
  • Muthukrishnan T, Govender A, Dobretsov S, Abed RMM. 2017. Evaluating the reliability of counting bacteria using epifluorescence microscopy. JMSE. 5:4. doi:10.3390/jmse5010004
  • Obadia B, Lacour S, Doublet P, Baubichon-Cortay H, Cozzone AJ, Grangeasse C. 2007. Influence of tyrosine-kinase Wzc activity on colanic acid production in Escherichia coli K12 cells. J Mol Biol. 367:42–53. doi:10.1016/j.jmb.2006.12.048
  • Olivier F, Tremblay R, Bourget E, Rittschof D. 2000. Barnacle settlement: field experiments on the influence of larval supply, tidal level, biofilm quality and age on Balanus amphitrite cyprids. Mar Ecol Prog Ser. 199:185–204. doi:10.3354/meps199185
  • Ophir T, Gutnick DL. 1994. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol. 60:740–745. doi:10.1128/AEM.60.2.740-745.1994
  • Paiment A, Hocking J, Whitfield C. 2002. Impact of phosphorylation of specific residues in the tyrosine autokinase, Wzc, on its activity in assembly of group 1 capsules in Escherichia coli. J Bacteriol. 184:6437–6447. doi:10.1128/jb.184.23.6437-6447.2002
  • Peng LH, Liang X, Guo XP, Yoshida A, Osatomi K, Yang JL. 2018. Complete genome of Pseudoalteromonas marina ECSMB14103 a mussel settlement-inducing bacterium isolated from the East China Sea. Mar Genom. 41:46–49. doi:10.1016/j.margen.2018.04.001
  • Peng LH, Liang X, Xu JK, Dobretsov S, Yang JL. 2020. Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus. Sci Rep. 10:2577. doi:10.1038/s41598-020-59506-1
  • Pérez-Mendoza D, Sanjuán J. 2016. Exploiting the commons: cyclic diguanylate regulation of bacterial exopolysaccharide production. Curr Opin Microbiol. 30:36–43. doi:10.1016/j.mib.2015.12.004
  • Prigent-Combaret C, Prensier G, Thi TTL, Vidal O, Lejeune P, Dorel C. 2000. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol. 2:450–464. doi:10.1046/j.1462-2920.2000.00128.x
  • Ramos-González MI, Travieso ML, Soriano MI, Matilla MA, Huertas-Rosales Ó, Barrientos-Moreno L, Tagua VG, Espinosa-Urgel M. 2016. Genetic dissection of the regulatory network associated with high c-di-GMP levels in Pseudomonas putida KT2440. Front Microbiol. 7:1093. doi:10.3389/fmicb.2016.01093
  • Rehm BH. 2010. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 8:578–592. doi:10.1038/nrmicro2354
  • Reid AN, Whitfield C. 2005. Functional analysis of conserved gene products involved in assembly of Escherichia coli capsules and exopolysaccharides: evidence for molecular recognition between Wza and Wzc for colanic acid biosynthesis. J Bacteriol. 187:5470–5481. doi:10.1128/JB.187.15.5470-5481.2005
  • Ren G, Wang Z, Li Y, Hu X, Wang X. 2016. Effects of lipopolysaccharide core sugar deficiency on colanic acid biosynthesis in Escherichia coli. J Bacteriol. 198:1576–1584. doi:10.1128/JB.00094-16
  • Riera CE, Dillin A. 2015. Tipping the metabolic scales towards increased longevity in mammals. Nat Cell Biol. 17:196–203. doi:10.1038/ncb3107
  • Ross P, Weinhouse H, Aloni Y, Michaeli D, Weinberger-Ohana P, Mayer R, Braun S, de Vroom E, van der Marel GA, van Boom JH, et al. 1987. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature. 325:279–281. doi:10.1038/325279a0
  • Schlapp G, Scavone P, Zunino P, Härtel S. 2011. Development of 3D architecture of uropathogenic Proteus mirabilis batch culture biofilms: a quantitative confocal microscopy approach. J Microbiol Methods. 87:234–240. doi:10.1016/j.mimet.2011.07.021
  • Schmid J, Sieber V, Rehm B. 2015. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol. 6:496. doi:10.3389/fmicb.2015.00496
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi:10.1080/08927014.2010.542809
  • Shikuma NJ, Antoshechkin I, Medeiros JM, Pilhofer M, Newman DK. 2016. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci USA. 113:10097–10102. doi:10.1073/pnas.1603142113
  • Starkey M, Hickman JH, Ma L, Zhang N, De Long S, Hinz A, Palacios S, Manoil C, Kirisits MJ, Starner TD, et al. 2009. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung. J Bacteriol. 191:3492–3503. doi:10.1128/JB.00119-09
  • Stefanetti G, Okan N, Fink A, Gardner E, Kasper DL. 2019. Glycoconjugate vaccine using a genetically modified O antigen induces protective antibodies to Francisella tularensis. Proc Natl Acad Sci USA. 116:7062–7070. doi:10.1073/pnas.1900144116
  • Steinberg PD, de Nys R, Kjelleberg S. 2001. Chemical mediation of surface colonization. In: McClintock JB, Baker JB, editors. Marine chemical ecology. Boca Raton (FL): CRC Press; p. 355–387.
  • Szewzyk U, Holmström C, Wrangstadh M, Samuelsson MO, Maki JS, Kjelleberg S. 1991. Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for the attachment of Ciona intestinalis larvae. Mar Ecol Prog Ser. 75:259–265. doi:10.3354/meps075259
  • Tebben J, Tapiolas DM, Mott CA, Abrego D, Negri AP, Blackall LL, Steinberg PD, Harder T. 2011. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS One. 6:e19082. doi:10.1371/journal.pone.0019082
  • Thiyagarajan V. 2010. A review on the role of chemical cues in habitat selection by barnacles: new insights from larval proteomics. J Exp Mar Biol Ecol. 392:22–36. doi:10.1016/j.jembe.2010.04.030
  • Trampari E, Stevenson CEM, Little RH, Wilhelm T, Lawson DM, Malone JG. 2015. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. J Biol Chem. 290:24470–24483. doi:10.1074/jbc.M115.661439
  • Tran C, Hadfield MG. 2011. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar Ecol Prog Ser. 433:85–96. doi:10.3354/meps09192
  • Wang C, Bao WY, Gu ZQ, Li YF, Liang X, Ling Y, Cai SL, Shen HD, Yang JL. 2012. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to natural biofilms. Biofouling. 28:249–256. doi:10.1080/08927014.2012.671303
  • Wang P, Yu Z, Li B, Cai X, Zeng Z, Chen X, Wang X. 2015. Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas. Microb Cell Fact. 14:11. doi:10.1186/s12934-015-0194-8
  • Whiteley CG, Lee DJ. 2015. Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development. Biotechnol Adv. 33:124–141. doi:10.1016/j.biotechadv.2014.11.010
  • Whitfield C. 2006. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem. 75:39–68. doi:10.1146/annurev.biochem.75.103004.142545
  • Woodward R, Yi W, Li L, Zhao G, Eguchi H, Sridhar PR, Guo H, Song JK, Motari E, Cai L, et al. 2010. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz. Nat Chem Biol. 6:418–423. doi:10.1038/nchembio.351
  • Yang JL, Li YF, Bao WY, Satuito CG, Kitamura H. 2011. Larval metamorphosis of the mussel Mytilus galloprovincialis Lamarck, 1819 in response to neurotransmitter blockers and tetraethylammonium. Biofouling. 27:193–199. doi:10.1080/08927014.2011.553717
  • Yang JL, Satuito CG, Bao WY, Kitamura H. 2008. Induction of metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis Lamarck, 1819 using neuroactive compounds, KCl, NH4Cl and organic solvents. Biofouling. 24:461–470. doi:10.1080/08927010802340309
  • Yang JL, Shen PJ, Liang X, Li YF, Bao WY, Li JL. 2013. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms. Biofouling. 29:247–259. doi:10.1080/08927014.2013.764412
  • Zeng ZS, Guo XP, Li BY, Wang PX, Cai XS, Tian XP, Zhang S, Yang JL, Wang XX. 2015. Characterization of self-generated variants in Pseudoalteromonas lipolytica biofilm with increased antifouling activities. Appl Microbiol Biotechnol. 99:10127–10139. doi:10.1007/s00253-015-6865-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.