Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 36, 2020 - Issue 8
322
Views
6
CrossRef citations to date
0
Altmetric
Articles

Exogenous fungal quorum sensing molecules inhibit planktonic cell growth and modulate filamentation and biofilm formation in the Sporothrix schenckii complex

, , , , , , ORCID Icon, , , & show all
Pages 909-921 | Received 16 May 2020, Accepted 17 Sep 2020, Published online: 15 Oct 2020

References

  • Alem MAS, Oteef MDY, Flowers TH, Douglas LJ. 2006. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryotic Cell. 5:1770–1779. doi:10.1128/EC.00219-06
  • Bernardo SM, Rane HS, Chavez-Dozal A, Lee SA. 2014. Secretion and filamentation are mediated by the Candida albicans t-SNAREs Sso2p and Sec9p. FEMS Yeast Res. 14:762–775. doi:10.1111/1567-1364.12165
  • Berrocal A, Oviedo C, Nickerson KW, Navarrete J. 2014. Quorum sensing activity and control of yeast-mycelium dimorphism in Ophiostoma floccosum. Biotechnol Lett. 36:1503–1513. doi:10.1007/s10529-014-1514-5
  • Borghi E, Borgo F, Morace G. 2016. Fungal biofilms: update on resistance. In: Christine Imbert, editor. Fungal biofilms related infection. Switzerland: Springer; p. 37–47.
  • Brilhante RSN, Oliveira JS, Evangelista AJDJ, Serpa R, Silva AL, Aguiar FRM, Pereira VS, Castelo DDS, Pereira-Neto WA, Cordeiro RDA, et al. 2016b. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans. Vet Microbiol. 192:213–219. doi:10.1016/j.vetmic.2016.07.022
  • Brilhante RSN, Caetano ÉP, Lima RACD, Marques FJDF, Castelo-Branco DDSCM, Melo CVSD, Guedes GMDM, Oliveira JSD, Camargo ZPD, Moreira JLB, et al. 2016a. Terpinen-4-ol, tyrosol, and β-lapachone as potential antifungals against dimorphic fungi. Brazilian J Microbiol. 47:917–924. doi:10.1016/j.bjm.2016.07.015
  • Brilhante RSN, de Aguiar FRM, da Silva MLQ, de Oliveira JS, de Camargo ZP, Rodrigues AM, Pereira VS, Serpa R, Castelo-Branco D. d S C M, Correia EEM, et al. 2018a. Antifungal susceptibility of Sporothrix schenckii complex biofilms. Med Mycol. 56:297–306. doi:10.1093/mmy/myx043
  • Brilhante RSN, de Lima RAC, Caetano EP, Leite JJG, Castelo-Branco DDSCM, Ribeiro JF, Bandeira TDJPG, Cordeiro RDA, Monteiro AJ, Sidrim JJC, et al. 2013. Effect of farnesol on growth, ergosterol biosynthesis, and cell permeability in Coccidioides posadasii. Antimicrob Agents Chemother. 57:2167–2170. doi:10.1128/AAC.02457-12
  • Brilhante RSN, de Lima RAC, Marques FJDF, Silva NF, Caetano ÉP, Castelo-Branco DDSCM, Bandeira TDJPG, Moreira JLB, Cordeiro RDA, Monteiro AJ, et al. 2015a. Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. J Med Microbiol. 64:394–399. doi:10.1099/jmm.0.000030
  • Brilhante RSN, Pereira VS, Oliveira JD, Lopes RGP, Rodrigues AM, de Camargo ZP, Pereira-Neto WDA, Castelo-Branco D, Cordeiro RDA, Sidrim JJC, et al. 2018b. Pentamidine inhibits the growth of Sporothrix schenckii complex and exhibits synergism with antifungal agents. Future Microbiol. 13:1129–1140. doi:10.2217/fmb-2018-0070
  • Brilhante RSN, Silva NF, Marques FJDF, Castelo-Branco DDSCM, de Lima RAC, Malaquias ADM, Caetano EP, Barbosa GR, de Camargo ZP, Rodrigues AM, et al. 2015b. In vitro inhibitory activity of terpenic derivatives against clinical and environmental strains of the Sporothrix schenkii complex. Med Mycol. 53:93–98. doi:10.1093/mmy/myu085
  • Chen H, Fink GR. 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20:1150–1161. doi:10.1101/gad.1411806
  • CLSI. 2017a. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi ; approved standard. 3rd ed. CLSI document M38ed3. Wayne, PA: Clinical and Laboratory Standards Institute.
  • CLSI. 2017b. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard. 4th ed. CLSI document M27ed4. Wayne, PA: Clinical and Laboratory Standards.
  • Cordeiro RA, Teixeira CEC, Brilhante RSN, Castelo-Branco DSCM, Paiva MAN, Giffoni Leite JJ, Lima DT, Monteiro AJ, Sidrim JJC, Rocha MFG. 2013. Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. Med Mycol. 51:53–59. doi:10.3109/13693786.2012.692489
  • Cordeiro RDA, Nogueira GC, Brilhante RSN, Teixeira CEC, Mourão CI, Castelo-Branco DDSCM, Paiva MDAN, Ribeiro JF, Monteiro AJ, Sidrim JJC, et al. 2012. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Vet Microbiol. 159:375–380. doi:10.1016/j.vetmic.2012.04.008
  • Cordeiro RDA, Pereira LMG, de Sousa JK, Serpa R, Andrade ARC, Portela FVM, Evangelista AJDJ, Sales JA, Aguiar ALR, Mendes PBL, et al. 2019. Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin. Med Mycol. 57:1038–1045. doi:10.1093/mmy/myy160
  • Cordeiro RDA, Teixeira CEC, Brilhante RSN, Castelo-Branco DSCM, Alencar LP, de Oliveira JS, Monteiro AJ, Bandeira TJPG, Sidrim JJC, Moreira JLB, et al. 2015. Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Res. 15:fov012. doi:10.1093/femsyr/fov012
  • de Salas F, Martínez MJ, Barriuso J. 2015. Quorum-sensing mechanisms mediated by farnesol in Ophiostoma piceae: effect on secretion of sterol esterase. Appl Environ Microbiol. 81:4351–4357. doi:10.1128/AEM.00079-15
  • Derengowski LS, De-Souza-Silva C, Braz SV, Mello-De-Sousa TM, Báo SN, Kyaw CM, Silva-Pereira I. 2009. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob. 8:13. doi:10.1186/1476-0711-8-13
  • Findri-Guštek S, Petek MJ, Sarajlija H, Mršić G, Džepina AM, Oreščanin V. 2012. The correlation of the lifestyle and medical conditions with the vaginal infections and production of 2-phenylethanol. Arch Gynecol Obstet. 286:671–682. doi:10.1007/s00404-012-2346-y
  • Gutierrez-Galhardo MC, Zancopé-Oliveira RM, Monzón A, Rodriguez-Tudela JL, Cuenca-Estrella M. 2010. Antifungal susceptibility profile in vitro of Sporothrix schenckii in two growth phases and by two methods: microdilution and E-test. Mycoses. 53:227–231. doi:10.1111/j.1439-0507.2009.01701.x
  • Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L, Sanglard D, Levin LR, Buck J, Mühlschlegel FA. 2011. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryotic Cell. 10:1034–1042. doi:10.1128/EC.05060-11
  • Han T-L, Tumanov S, Cannon RD, Villas-Boas SG. 2013. Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions. PLoS One. 8:e71364. doi:10.1371/journal.pone.0071364
  • Harding MW, Marques LLR, Howard RJ, Olson ME. 2009. Can filamentous fungi form biofilms? Trends Microbiol. 17:475–480. doi:10.1016/j.tim.2009.08.007
  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 146:2395–2407. doi:10.1099/00221287-146-10-2395
  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 67:2982–2992. doi:10.1128/AEM.67.7.2982-2992.2001
  • Jakab Á, Tóth Z, Nagy F, Nemes D, Bácskay I, Kardos G, Emri T, Pócsi I, Majoros L, Kovács R. 2019. Physiological and transcriptional responses of Candida parapsilosis to exogenous tyrosol. Appl Environ Microbiol. 85:e01388. doi:10.1128/AEM.01388-19
  • Lindsay AK, Deveau A, Piispanen AE, Hogan DA. 2012. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryotic Cell. 11:1219–1225. doi:10.1128/EC.00144-12
  • Liu P, Cheng Y, Yang M, Liu Y, Chen K, Long C, Deng X. 2014. Mechanisms of action for 2-phenylethanol isolated from Kloeckera apiculata in control of Penicillium molds of citrus fruits. BMC Microbiol. 14:242doi:10.1186/s12866-014-0242-2
  • Lopes-Bezerra LM, Mora-Montes HM, Zhang Y, Nino-Vega G, Rodrigues AM, De Camargo ZP, De Hoog S. 2018. Sporotrichosis between 1898 and 2017: the evolution of knowledge on a changeable disease and on emerging etiological agents. Med Mycol. 56:126–S143. doi:10.1093/mmy/myx103
  • Martínez-Álvarez JA, Pérez-García LA, Mellado-Mojica E, López MG, Martínez-Duncker I, Lópes-Bezerra LM, Mora-Montes HM. 2017. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis are differentially recognized by human peripheral blood mononuclear cells. Front Microbiol. 8:843. doi:10.3389/fmicb.2017.00843
  • Mehmood A, Liu G, Wang X, Meng G, Wang C, Liu Y. 2019. Fungal quorum-sensing molecules and inhibitors with potential antifungal activity: a review. Molecules. 24:1950. doi:10.3390/molecules24101950
  • Mesa-Arango AC, Rueda C, Román E, Quintin J, Terrón MC, Luque D, Netea MG, Pla J, Zaragoza O. 2016. Cell wall changes in amphotericin B-resistant strains from Candida tropicalis and relationship with the immune responses elicited by the host. Antimicrob Agents Chemother. 60:2326–2335. doi:10.1128/AAC.02681-15
  • Nagy F, Vitális E, Jakab A, Borman AM, Forgács L, Tóth Z, Majoros L. Kovács 2020. In vitro and in vivo effect of exogenous farnesol exposure against Candida auris. Front Microbiol. 11:Article 957, 1–12. doi:10.3389/fmicb.2020.00957
  • Padder SA, Prasad R, Shah AH. 2018. Quorum sensing: a less known mode of communication among fungi. Microbiol Res. 210:51–58. doi:10.1016/j.micres.2018.03.007
  • Paluch E, Rewak-Soroczyńska J, Jędrusik I, Mazurkiewicz E, Jermakow K. 2020. Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol. 104:1871–1811. doi:10.1007/s00253-020-10349-w
  • Polke M, Leonhardt I, Kurzai O, Jacobsen ID. 2018. Farnesol signalling in Candida albicans - more than just communication. Crit Rev Microbiol. 44:230–243. doi:10.1080/1040841X.2017.1337711
  • Pu L, Jingfan F, Kai C, Chao-An L, Yunjiang C. 2014. Phenylethanol promotes adhesion and biofilm formation of the antagonistic yeast Kloeckera apiculata for the control of blue mold on citrus. FEMS Yeast Res. 14:536–546. doi:10.1111/1567-1364.12139
  • Ramírez-Soto MC, Aguilar-Ancori EG, Tirado-Sánchez A, Bonifaz A. 2018. Ecological determinants of sporotrichosis etiological agents. JoF. 4:95. doi:10.3390/jof4030095
  • Rodrigues CF, Černáková L. 2020. Farnesol and tyrosol: secondary metabolites with a crucial quorum-sensing role in Candida biofilm development. Genes (Basel). 11:444. doi:10.3390/genes11040444
  • Rodrigues AM, de Hoog S, de Camargo ZP. 2013a. Emergence of pathogenicity in the Sporothrix schenckii complex. Med Mycol. 51:405–412. doi:10.3109/13693786.2012.719648
  • Rodrigues AM, Teixeira M de M, de Hoog GS, Schubach TMP, Pereira SA, Fernandes GF, Bezerra LML, Felipe MS, de Camargo ZP. 2013b. Phylogenetic analysis reveals a high prevalence of Sporothrix brasiliensis in feline sporotrichosis outbreaks. PLoS Negl Trop Dis. 7:e2281doi:10.1371/journal.pntd.0002281
  • Sanchotene KO, Brandolt TM, Klafke GB, Poester VR, Xavier MO. 2017. In vitro susceptibility of Sporothrix brasiliensis: comparison of yeast and mycelial phases. Med Mycol. 55:869–876. doi:10.1093/mmy/myw143
  • Sebaa S, Boucherit ‑Otmani Z, Courtois P. 2019. Effects of tyrosol and farnesol on Candida albicans biofilm. Mol Med Rep. 19:3201–3209.
  • Singh MP, Singh P, Li H-B, Song Q-Q, Singh RK. 2020. Microbial biofilms: development, structure, and their social assemblage for beneficial applications. In: Mukesh Kumar Yadav, Bhim Pratap Singh, editors. New and future developments in microbial biotechnology and bioengineering: microbial biofilms. Amsterdam, Netherlands: Elsevier; p. 125–138.
  • Singkum P, Muangkaew W, Suwanmanee S, Pumeesat P, Wongsuk T, Luplertlop N. 2019. Suppression of the pathogenicity of Candida albicans by the quorum-sensing molecules farnesol and tryptophol. J Gen Appl Microbiol. 65:2012–2018. doi:10.2323/jgam.2018.12.002
  • Wang X, Wang Y, Zhou Y, Wei X. 2014. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus. Mycologia. 106:881–888. doi:10.3852/13-292
  • Wongsuk T, Luplertlop N. 2020. Effect of quorum sensing molecules on Aspergillus fumigatus. Walailak J Sci Technol. 17:348–358.
  • Wongsuk T, Pumeesat P, Luplertlop N. 2016. Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol. 56:440–447. doi:10.1002/jobm.201500759
  • Xia J, Qian F, Xu W, Zhang Z, Wei X. 2017. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. Biofouling. 33:283–293. doi:10.1080/08927014.2017.1295304
  • Zhang J, Feng T, Wang J, Wang Y, Zhang X-H. 2019. The Mechanisms and applications of quorum sensing (QS) and quorum quenching (QQ). J Ocean Univ China. 18:1427–1442. doi:10.1007/s11802-019-4073-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.