Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 1
379
Views
7
CrossRef citations to date
0
Altmetric
Research Article

New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI’s)

, , , , &
Pages 1-35 | Received 23 Aug 2020, Accepted 20 Dec 2020, Published online: 22 Feb 2021

References

  • Abdulkareem EH, Memarzadeh K, Allaker RP, Huang J, Pratten J, Spratt D. 2015. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J Dent. 43:1462–1469. doi:10.1016/j.jdent.2015.10.010
  • Abedon ST. 2015. Ecology of anti-biofilm agents II: bacteriophage exploitation and biocontrol of biofilm bacteria. Pharmaceuticals (Basel)). 8:559–589. doi:10.3390/ph8030559
  • Abedon ST. 2016b. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets? FEMS Microbiol Lett. 363:fnv246. 10.1093/femsle/fnv246. doi:10.1093/femsle/fnv246
  • Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. 2018. Bacterial quorum sensing and microbial communityi interactions. mBio. 9:e02331. doi:10.1128/mBio.01749-18
  • Alkawash MA, Soothill JS, Schiller NL. 2006. Alginate lyase enhances antibiotic killing of mucoid Pseudomonas aeruginosa in biofilms. APMIS. 114:131–138. doi:10.1111/j.1600-0463.2006.apm_356.x
  • Andersson DI, Hughes D, Kubicek-Sutherland JZ. 2016. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat. 26:43–57. doi:10.1016/j.drup.2016.04.002
  • Annunziata M, Canullo L, Donnarumma G, Caputo P, Nastri L, Guida L. 2016. Bacterial inactivation/sterilization by argon plasma treatment on contaminated titanium implant surfaces: in vitro study. Med Oral Patol Oral Cir Bucal. 21:e118–e121. doi:10.4317/medoral.20845
  • Ansari MA, Khan HM, Khan AA, Cameotra SS, Saquib Q, Musarrat J. 2014. Interaction of Al2O3 nanoparticles with Escherichia coli and their cell envelope biomolecules. J Appl Microbiol. 116(4):772–783. doi:10.1111/jam.12423
  • Antoci V, Adams CS, Parvizi J, Davidson HM, Composto RJ, Freeman TA, Wickstrom E, Ducheyne P, Jungkind D, Shapiro IM, et al. 2008. The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials. 29:4684–4690. doi:10.1016/j.biomaterials.2008.08.016
  • Antoci V, Jr, Adams CS, Parvizi J, Ducheyne P, Shapiro IM, Hickok NJ. 2007. Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin Orthop Relat Res. 461:81–87. doi:10.1097/BLO.0b013e3181123a50
  • Arciola CR, Campoccia D, Ehrlich GD, Montanaro L. 2015. Biofilm-based implant infections in orthopaedics. Adv Exp Med Biol. 830:29–46. doi:10.1007/978-3-319-11038-7_2
  • Arciola CR, Campoccia D, Montanaro L. 2018. Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol. 16:397–409. doi:10.1038/s41579-018-0019-y
  • Aslam S, Pretorius V, Lehman SM, Morales S, Schooley RT. 2019. Novel bacteriophage therapy for treatment of left ventricular assist device infection. J Heart Lung Transplant. 38:475–476. doi:10.1016/j.healun.2019.01.001
  • Azeredo J, Sutherland IW. 2008. The use of phages for the removal of infectious biofilms. Curr Pharm Biotechnol. 9:261–266. doi:10.2174/138920108785161604
  • Baidamshina DR, Trizna EY, Holyavka MG, Bogachev MI, Artyukhov VG, Akhatova FS, Rozhina EV, Fakhrullin RF, Kayumov AR. 2017. Targeting microbial biofilms using Ficin, a nonspecific plant protease. Sci Rep. 7:46068. doi:10.1038/srep46068
  • Balaban N, Cirioni O, Giacometti A, Ghiselli R, Braunstein JB, Silvestri C, Mocchegiani F, Saba V, Scalise G. 2007. Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother. 51:2226–2229. doi:10.1128/AAC.01097-06
  • Balaban N, Giacometti A, Cirioni O, Gov Y, Ghiselli R, Mocchegiani F, Viticchi C, Del Prete MS, Saba V, Scalise G, et al. 2003. Use of the quorum-sensing inhibitor RNAIII-inhibiting peptide to prevent biofilm formation in vivo by drug-resistant Staphylococcus epidermidis. J Infect Dis. 187:625–630. doi:10.1086/345879
  • Banar M, Emaneini M, Beigverdi R, Fanaei Pirlar R, Node Farahani N, van Leeuwen WB, Jabalameli F. 2019. The efficacy of lyticase and β-glucosidase enzymes on biofilm degradation of Pseudomonas aeruginosa strains with different gene profiles. BMC Microbiol. 19:291. doi:10.1186/s12866-019-1662-9
  • Batoni G, Maisetta G, Brancatisano FL, Esin S, Campa M. 2011. Use of antimicrobial peptides against microbial biofilms: advantages and limits. Curr Med Chem. 18:256–279. doi:10.2174/092986711794088399
  • Batoni G, Maisetta G, Esin S. 2016. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta. 1858:1044–1060. doi:10.1016/j.bbamem.2015.10.013
  • Bernthal NM, Stavrakis AI, Billi F, Cho JS, Kremen TJ, Simon SI, Cheung AL, Finerman GA, Lieberman JR, Adams JS, et al. 2010. A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One. 5:e12580. doi:10.1371/journal.pone.0012580
  • Bistolfi A, Massazza G, Verné E, Massè A, Deledda D, Ferraris S, Miola M, Galetto F, Crova M. 2011. Antibiotic-loaded cement in orthopedic surgery: a review. ISRN Orthop. 2011:290851. doi:10.5402/2011/290851
  • Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F. 2012. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects. Adv Colloid Interface Sci. 170:2–27. doi:10.1016/j.cis.2011.11.001
  • Biswas B, Adhya S, Washart P, Paul B, Trostel AN, Powell B, Carlton R, Merril CR. 2002. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun. 70:204–210. doi:10.1128/iai.70.1.204-210.2002
  • Biswas R, Voggu L, Simon UK, Hentschel P, Thumm G, Gotz F. 2006. Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett. 259:260–268. doi:10.1111/j.1574-6968.2006.00281.x
  • Bjarnsholt T, van Gennip M, Jakobsen TH, Christensen LD, Jensen PØ, Givskov M. 2010. In vitro screens for quorum sensing inhibitors and in vivo confirmation of their effect. Nat Protoc. 5:282–293. doi:10.1038/nprot.2009.205
  • Bloemen M, Brullot W, Luong TT, Geukens N, Gils A, Verbiest T. 2012. Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications. J Nanopart Res. 14:1100. doi:10.1007/s11051-012-1100-5
  • Bozic KJ, Katz P, Cisternas M, Ono L, Ries MD, Showstack J. 2005. Hospital resource utilization for primary and revision total hip arthroplasty. J Bone Joint Surg Am. 87:570–576.
  • Bozic KJ, Ries MD. 2005. The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J Bone Joint Surg Am. 87:1746–1751. doi:10.2106/JBJS.D.02937
  • Brackman G, Coenye T. 2015. Quorum sensing inhibitors as anti-biofilm agents. Curr Pharm Des. 21:5–11. doi:10.2174/1381612820666140905114627
  • Brackman G, Cos P, Maes L, Nelis HJ, Coenye T. 2011b. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother. 55:2655–2661. doi:10.1128/AAC.00045-11
  • Brady AJ, Laverty G, Gilpin DF, Kearney P, Tunney M. 2017. Antibiotic susceptibility of planktonic- and biofilm-grown staphylococci isolated from implant-associated infections: should MBEC and nature of biofilm formation replace MIC? J Med Microbiol. 66:461–469. doi:10.1099/jmm.0.000466 PMID: 28463662.
  • Brancatisano FL, Maisetta G, Di Luca M, Esin S, Bottai D, Bizzarri R, Campa M, Batoni G. 2014. Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling. 30:435–446. doi:10.1080/08927014.2014.888062
  • Broekhuizen CAN, de Boer L, Schipper K, Jones CD, Quadir S, Feldman RG, Dankert J, Vandenbroucke-Grauls CMJE, Weening JJ, Zaat SAJ. 2007. Peri-implant tissue is an important niche for Staphylococcus epidermidis in experimental biomaterial-associated infection in mice. Infect Immun. 75:1129–1136. doi:10.1128/IAI.01262-06
  • Brown AN, Smith K, Samuels TA, Lu J, Obare SO, Scott ME. 2012. Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 78:2768–2774. doi:10.1128/AEM.06513-11
  • Buchegger S, Kamenac A, Fuchs S, Herrmann R, Houdek P, Gorzelanny C, Obermeier A, Heller S, Burgkart R, Stritzker B, et al. 2019. Smart antimicrobial efficacy employing pH-sensitive ZnO-doped diamond-like carbon coatings. Sci Rep. 9:17246. doi:10.1038/s41598-019-53521-7
  • Bulman ZP, Ly NS, Lenhard JR, Holden PN, Bulitta JB, Tsuji BT. 2017. Influence of rhlR and lasR on polymyxin pharmacodynamics in Pseudomonas aeruginosa and implications for quorum sensing inhibition with azithromycin. Antimicrob Agents Chemother. 61:e00096. doi:10.1128/AAC.00096-16
  • Busscher HJ, Alt V, van der Mei HC, Fagette PH, Zimmerli W, Moriarty TF, Parvizi J, Schmidmaier G, Raschke MJ, Gehrke T, et al. 2019. A trans-Atlantic perspective on stagnation in clinical translation of antimicrobial strategies for the control of biomaterial-implant-associated infection. ACS Biomater Sci Eng. 5:402–406. doi:10.1021/acsbiomaterials.8b01071
  • Campoccia D, Montanaro L, Arciola CR. 2006. The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials. 27:2331–2339. doi:10.1016/j.biomaterials.2005.11.044
  • Campoccia D, Speziale P, Ravaioli S, Cangini I, Rindi S, Pirini V, Montanaro L, Arciola CR. 2009. The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections. Biomaterials. 30:6621–6628. doi:10.1016/j.biomaterials.2009.08.032
  • Carpenter AW, Worley BV, Slomberg DL, Schoenfisch MH. 2012. Dual action antimicrobials: nitric oxide release from quaternary ammonium-functionalized silica nanoparticles. Biomacromolecules. 13:3334–3342. doi:10.1021/bm301108x
  • Carter DR, Beaupré GS, Giori NJ, Helms JA. 1998. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. S41–S55.
  • Chauvin J, Judée F, Yousfi M, Vicendo P, Merbahi N. 2017. Analysis of reactive oxygen and nitrogen species generated in three liquid media by low temperature helium plasma jet. Sci Rep. 7:4562. doi:10.1038/s41598-017-04650-4
  • Chen CH, Lu TK. 2020. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics (Basel). 9:24. doi:10.3390/antibiotics9010024
  • Chen CP, Wickstrom E. 2010. Self-protecting bactericidal titanium alloy surface formed by covalent bonding of daptomycin bisphosphonates. Bioconjug Chem. 21:1978–1986. doi:10.1021/bc100136e
  • Chen J, Shi X, Zhu Y, Chen Y, Gao M, Gao H, Liu L, Wang L, Mao C, Wang Y. 2020. On-demand storage and release of antimicrobial peptides using Pandora's box-like nanotubes gated with a bacterial infection-responsive polymer. Theranostics. 10:109–122. doi:10.7150/thno.38388
  • Chen M, Yu Q, Sun H. 2013. Novel strategies for the prevention and treatment of biofilm related infections. Int J Mol Sci. 14:18488–18501. doi:10.3390/ijms140918488
  • Chen Z, Yu X, Zhang A, Wang F, Xing Y. 2020. De novo hydrocarbon-stapling design of single-turn α-helical antimicrobial peptides. Int J Pept Res Ther. 26:1711–1719.
  • Cheng H, Yue K, Kazemzadeh-Narbat M, Liu Y, Khalilpour A, Li B, Zhang YS, Annabi N, Khademhosseini A. 2017. Mussel-inspired multifunctional hydrogel coating for prevention of infections and enhanced osteogenesis. ACS Appl Mater Interfaces. 9:11428–11439. doi:10.1021/acsami.6b16779
  • Chhibber S, Kaur J, Kaur S. 2018. Liposome entrapment of bacteriophages improves wound healing in a diabetic mouse MRSA infection. Front Microbiol. 9:561. doi:10.3389/fmicb.2018.00561
  • Chhibber S, Kaur S, Kumari S. 2008. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol. 57:1508–1513. doi:10.1099/jmm.0.2008/002873-0
  • Chhibber S, Shukla A, Kaur S. 2017. Transfersomal phage cocktail is an effective treatment against methicillin-resistant Staphylococcus aureus-mediated skin and soft tissue infections. Antimicrob Agents Chemother. 61:e02146–16. doi:10.1128/AAC.02146-16
  • Chiang W-C, Nilsson M, Jensen PØ, Høiby N, Nielsen TE, Givskov M, Tolker-Nielsen T. 2013. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 57:2352–2361. doi:10.1128/AAC.00001-13
  • Choe H, Narayanan AS, Gandhi DA, Weinberg A, Marcus RE, Lee Z, Bonomo RA, Greenfield EM. 2015. Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration. Clin Orthop Relat Res. 473:2898–2907. doi:10.1007/s11999-015-4301-2
  • Chou WC, Wang RC, Huang CL, Lee TM. 2018. The effect of plasma treatment on the osseointegration of rough titanium implant: a histo-morphometric study in rabbits. J Dent Sci. 13:267–273. doi:10.1016/j.jds.2018.06.002
  • Chung PY, Khanum R. 2017. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect. 50:405–410. doi:10.1016/j.jmii.2016.12.005
  • Cirioni O, Mocchegiani F, Cacciatore I, Vecchiet J, Silvestri C, Baldassarre L, Ucciferri C, Orsetti E, Castelli P, Provinciali M, et al. 2013. Quorum sensing inhibitor FS3-coated vascular graft enhances daptomycin efficacy in a rat model of staphylococcal infection. Peptides. 40:77–81. doi:10.1016/j.peptides.2012.12.002
  • Cleophas RTC, Riool M, Quarles van Ufford H, Linda C, Zaat SAJ, Kruijtzer JAW. 2014. Convenient preparation of bactericidal hydrogels by covalent attachment of stabilized antimicrobial peptides using thiol–ene click chemistry. ACS Macro Lett. 3:477–480. doi:10.1021/mz5001465
  • Cobb LH, Park J, Swanson EA, Beard MC, McCabe EM, Rourke AS, Seo KS, Olivier AK, Priddy LB. 2019. CRISPR-Cas9 modified bacteriophage for treatment of Staphylococcus aureus induced osteomyelitis and soft tissue infection. PLoS One. 14:e0220421. doi:10.1371/journal.pone.0220421
  • Colon G, Ward BC, Webster TJ. 2006. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A. 78:595–604. doi:10.1002/jbm.a.30789
  • Conlon BP, Geoghegan JA, Waters EM, McCarthy H, Rowe SE, Davies JR, Schaeffer CR, Foster TJ, Fey PD, O'Gara JP. 2014. Role for the A domain of unprocessed accumulation-associated protein (Aap) in the attachment phase of the Staphylococcus epidermidis biofilm phenotype . J Bacteriol. 196:4268–4275. doi:10.1128/JB.01946-14
  • Connaughton A, Childs A, Dylewski S, Sabesan VJ. 2014. Biofilm disrupting technology for orthopedic implants: what's on the horizon? Front Med (Lausanne). 1:22. i doi:10.3389/fmed.2014.00022
  • Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins MC. 2011. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 7:1431–1440. doi:10.1016/j.actbio.2010.11.005
  • Costerton JW, Montanaro L, Arciola CR. 2005. Biofilm in implant infections: its production and regulation. Int J Artif Organs. 28:1062–1068. doi:10.1177/039139880502801103
  • Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science. 284:1318–1322. doi:10.1126/science.284.5418.1318
  • Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F. 1999. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun. 67:5427–5433. doi:10.1128/IAI.67.10.5427-5433.1999
  • Crockarell JR, Hanssen AD, Osmon DR, Morrey BF. 1998. Treatment of infection with débridement and retention of the components following hip arthroplasty. J Bone Joint Surg Am. 80:1306–1313. doi:10.2106/00004623-199809000-00009
  • Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. 2012. The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 33:2327–2333. doi:10.1016/j.biomaterials.2011.11.057
  • Daraee H, Eatemadi A, Abbasi E, Fekri Aval S, Kouhi M, Akbarzadeh A. 2016. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol. 44:410–422. doi:10.3109/21691401.2014.955107
  • Darouiche RO. 2004. Treatment of infections associated with surgical implants. N Engl J Med. 350:1422–1429. doi:10.1056/NEJMra035415
  • Darouiche RO, Landon GC, Patti JM, Nguyen LL, Fernau RC, McDevitt D, Greene C, Foster T, Klima M. 1997. Role of Staphylococcus aureus surface adhesins in orthopaedic device infections: are results model-dependent? J Med Microbiol. 46:75–79. doi:10.1099/00222615-46-1-75
  • Darouiche RO, Mansouri MD, Gawande PV, Madhyastha S. 2009. Antimicrobial and anti-biofilm efficacy of triclosan and Dispersin B combination. J Antimicrob Chemother. 64:88–93. doi:10.1093/jac/dkp158
  • Darouiche RO. 2004. Treatment of infections associated with surgical implants. N Engl J Med. 350:1422–1429. doi:10.1056/NEJMra035415
  • Das MC, Sandhu P, Gupta P, Rudrapaul P, De UC, Tribedi P, Akhter Y, Bhattacharjee S. 2016. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: a combinatorial study with azithromycin and gentamicin. Sci Rep. 6:23347. doi:10.1038/srep23347
  • Dastgheyb S, Parvizi J, Shapiro IM, Hickok NJ, Otto M. 2015. Effect of biofilms on recalcitrance of staphylococcal joint infection to antibiotic treatment. J Infect Dis. 211:641–650. doi:10.1093/infdis/jiu514
  • Davidson DJ, Spratt D, Liddle AD. 2019. Implant materials and prosthetic joint infection: the battle with the biofilm. EFORT Open Rev. 4:633–639. doi:10.1302/2058-5241.4.180095
  • Davidson H, Poon M, Saunders R, Shapiro IM, Hickok NJ, Adams CS. 2015. Tetracycline tethered to titanium inhibits colonization by Gram-negative bacteria. J Biomed Mater Res B Appl Biomater. 103:1381–1389. doi:10.1002/jbm.b.33310
  • de Breij A, Riool M, Kwakman PHS, de Boer L, Cordfunke RA, Drijfhout JW, Cohen O, Emanuel N, Zaat SAJ, Nibbering PH, et al. 2016. Prevention of Staphylococcus aureus biomaterial-associated infections using a polymer-lipid coating containing the antimicrobial peptide OP-145. J Control Release. 222:1–8. doi:10.1016/j.jconrel.2015.12.003
  • de la Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, Coenye T, Hancock REW. 2015. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol. 22:196–205. doi:10.1016/j.chembiol.2015.01.002
  • De Lucas-Villarrubia JC, Lopez-Franco M, Granizo JJ, De Lucas-Garcia JC, Gomez-Barrena E. 2004. Strategy to control methicillin-resistant Staphylococcus aureus post-operative infection in orthopaedic surgery. Int Orthop. 28:16–20. doi:10.1007/s00264-003-0460-y
  • Del Pozo JL, Rouse MS, Patel R. 2008. Bioelectric effect and bacterial biofilms. A systematic review. Int J Artif Organs. 31:786–795. doi:10.1177/039139880803100906
  • Delago A, Mandabi A, Meijler MM. 2016. Natural quorum sensing inhibitors–small molecules, big messages. Isr J Chem. 56:310–320. doi:10.1002/ijch.201500052
  • DeMeo D, Calogero V, Are L, Cavallo AU, Persiani P, Villani C. 2020. Antibiotic-loaded hydrogel coating to reduce early postsurgical infections in aseptic hip revision surgery: a retrospective, matched case-control study. Microorganisms. 8:571.
  • Dhammi IK, Ul Haq R, Kumar S. 2015. Prophylactic antibiotics in orthopedic surgery: controversial issues in its use. Indian J Orthop. 49:373–376. doi:10.4103/0019-5413.159556
  • Di YP, Lin Q, Chen C, Montelaro RC, Doi Y, Deslouches B. 2020. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. Sci Adv. 6:eaay6817. doi:10.1126/sciadv.aay6817
  • Diefenbeck M, Schrader C, Gras F, Mückley T, Schmidt J, Zankovych S, Bossert J, Jandt KD, Völpel A, Sigusch BW, et al. 2016. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials. 101:156–164. doi:10.1016/j.biomaterials.2016.05.039
  • Divakar DD, Jastaniyah NT, Altamimi HG. 2018. Enhanced antimicrobial activity of naturally derived bioactive molecule chitosan conjugated silver nanoparticle against dental implant pathogens. Int J BiolMacromol. 108:790–797. doi:10.1016/j.ijbiomac.2017.10.166
  • Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M. 2020. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials (Basel). 13:279. doi:10.3390/ma13020279
  • Dong Y, Xu Y, Li P, Wang C, Cao Y, Yu J. 2017. Anti-biofilm effect of ultrasound combined with microbubbles against Staphylococcus epidermidis biofilm. Int J Med Microbiol. 307:321–328. doi:10.1016/j.ijmm.2017.06.001
  • Doshi P, Gopalan H, Sprague S, Pradhan C, Kulkarni S, Bhandari M. 2017. Incidence of infection following internal fixation of open and closed tibia fractures in India (INFINITI): a multi-centre observational cohort study. BMC Musculoskelet Disord. 18:156. doi:10.1186/s12891-017-1506-4
  • Doub JB, Ng VY, Johnson AJ, Slomka M, Fackler J, Horne B, Brownstein MJ, Henry M, Malagon F, Biswas B. 2020. Salvage bacteriophage therapy for a chronic MRSA prosthetic joint infection. Antibiotics (Basel). 9:241. doi:10.3390/antibiotics9050241
  • Duckworth DH, Gulig PA. 2002. Bacteriophages: potential treatment for bacterial infections. BioDrugs. 16:57–62. doi:10.2165/00063030-200216010-00006
  • Durrieu MC, Pallu S, Guillemot F, Bareille R, Amédée J, Baquey CH, Labrugère C, Dard M. 2004. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci Mater Med. 15:779–786. doi:10.1023/b:jmsm.0000032818.09569.d9
  • Dusane DH, Lochab V, Jones T, Peters CW, Sindeldecker D, Das A, Roy S, Sen CK, Subramaniam VV, Wozniak DJ, et al. 2019. Electroceutical treatment of Pseudomonas aeruginosa biofilms. Sci Rep. 9:1–13. doi:10.1038/s41598-018-37891-y
  • Duske K, Koban I, Kindel E, Schroder K, Nebe B, Holtfreter B, Jablonowski L, Weltmann KD, Kocher T. 2012. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol. 39:400–407. doi:10.1111/j.1600-051X.2012.01853.x
  • Ekrami A, Abbasi Montazeri E, Kaydani GA, Shokoohizadeh L. 2015. Methicillin resistant staphylococci: prevalence and susceptibility patterns in a burn center in Ahvaz from 2013-2014. Iran J Microbiol. 7:208–213.
  • El Shazely B, Yu G, Johnston PR, Rolff J. 2020. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front Microbiol. 11:103. doi:10.3389/fmicb.2020.00103
  • Falugi F, Kim HK, Missiakas DM, Schneewind O. 2013. Role of protein A in the evasion of host adaptive immune responses by Staphylococcus aureus. mBio. 4:e00575–e00513. doi:10.1128/mBio.00575-13
  • Fang FC. 1997. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 99:2818–2825. doi:10.1172/JCI119473
  • Fernandes M. d C, Peres LR, de Queiroz AC, Lima JQ, Turíbio FM, Matsumoto MH. 2015. Open fractures and the incidence of infection in the surgical debridement 6 hours after trauma. Acta Ortop Bras. 23:38–42. doi:10.1590/1413-78522015230100932
  • Fleming D, Rumbaugh K. 2018. The consequences of biofilm dispersal on the Host. Sci Rep. 8:10738 doi:10.1038/s41598-018-29121-2
  • Fleming D, Rumbaugh K. 2018. The consequences of biofilm dispersal on the Host. Sci Rep. 8:10738 doi:10.1038/s41598-018-29121-2
  • Fong SA, Drilling A, Morales S. 2017. Activity of bacteriophages in removing bofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol. 7:418.
  • Foster TJ, Geoghegan JA, Ganesh VK, Hook M. 2014. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 12:49–62. doi:10.1038/nrmicro3161.
  • Fu W, Forster T, Mayer O, Curtin JJ, Lehman SM, Donlan RM. 2010. Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother . 54:397–404. doi:10.1128/AAC.00669-09
  • Fulzele SV, Satturwar PM, Dorle AK. 2007. Novel biopolymers as implant matrix for the delivery of ciprofloxacin: biocompatibility, degradation, and in vitro antibiotic release. J Pharm Sci. 96:132–144. doi:10.1002/jps.20730
  • Furfaro LL, Payne MS, Chang BJ. 2018. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front Cell Infect Microbiol.8:376. doi:10.3389/fcimb.2018.00376
  • Garnett JA, Matthews S. 2012. Interactions in bacterial biofilm development: a structural perspective. Curr Protein Pept Sci. 13:739–755. doi:10.2174/138920312804871166
  • Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. 2005. New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev. 105:1171–1196. doi:10.1021/cr030076o
  • Genovese EA, Avgerinos ED, Baril DT, Makaroun MS, Chaer RA. 2016. Bio-absorbable antibiotic impregnated beads for the treatment of prosthetic vascular graft infections. Vascular. 24:590–597. doi:10.1177/1708538116630859
  • Gollwitzer H, Ibrahim K, Meyer H, Mittelmeier W, Busch R, Stemberger A. 2003. Antibacterial poly(d, l-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother. 51:585–591. doi:10.1093/jac/dkg105
  • Goodman SB, Yao Z, Keeney M, Yang F. 2013. The future of biologic coatings for orthopaedic implants. Biomaterials. 34:3174–3183. doi:10.1016/j.biomaterials.2013.01.074
  • Gour A, Jain NK. 2019. Advances in green synthesis of nanoparticles. Artif Cells Nanomed Biotechnol. 47:844–851. doi:10.1080/21691401.2019.1577878
  • Graniel O, Weber M, Balme S, Miele P, Bechelany M. 2018. Atomic layer deposition for biosensing applications. Biosens Bioelectron. 122:147–159. doi:10.1016/j.bios.2018.09.038
  • Gristina AG. 1987. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 237:1588–1595. doi:10.1126/science.3629258
  • Guastaldi FPS, Yoo D, Marin C, Jimbo R, Tovar N, Zanetta-Barbosa D, Coelho PG. 2013. Plasma treatment maintains surface energy of the implant surface and enhances osseointegration. Int J Biomater. 2013:1–6. doi:10.1155/2013/354125
  • Guilhen C, Forestier C, Balestrino D. 2017. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol. 105:188–210. doi:10.1111/mmi.13698
  • Gunputh UF, Le H, Besinis A, Tredwin C, Handy RD. 2019. Multilayered composite coatings of titanium dioxide nanotubes decorated with zinc oxide and hydroxyapatite nanoparticles: controlled release of Zn and antimicrobial properties against Staphylococcus aureus. Int J Nanomed. 14:3583–3600. doi:10.2147/IJN.S199219
  • Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P. 2016. Biofilm, pathogenesis and prevention-a journey to break the wall: a review. Arch Microbiol. 198:1–15. doi:10.1007/s00203-015-1148-6
  • Gursel I, Korkusuz F, Türesin F, Alaeddinoglu NG, Hasirci V. 2001. In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials. 22:73–80. doi:10.1016/s0142-9612(00)00170-8
  • Hadeer IM. 2016. An overview of orthopedic implants. Mathews J Orthop. 1:003.
  • Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M. 2012. Antibacterial properties of nanoparticles. Trends Biotechnol. 30:499–511. doi:10.1016/j.tibtech.2012.06.004
  • Hammer ND, Skaar EP. 2011. Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol. 65:129–147. doi:10.1146/annurev-micro-090110-102851
  • Han G, Martinez LR, Mihu MR, Friedman AJ, Friedman JM, Nosanchuk JD. 2009. Nitric oxide releasing nanoparticles are therapeutic for Staphylococcus aureus abscesses in a murine model of infection. PLoS One. 4:e7804. doi:10.1371/journal.pone.0007804
  • Hancock RE, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 24:1551–1557. doi:10.1038/nbt1267
  • Hanssen AD. 2005. Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthop Relat Res. 91–96.
  • Harms A, Maisonneuve E, Gerdes K. 2016. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science. 354:aaf4268. doi:10.1126/science.aaf4268
  • Harper D, Parracho H, Walker J, Sharp R, Hughes G, Werthén M, Lehman S, Morales S. 2014. Bacteriophages and Biofilms. Antibiotics (Basel). 3:270–284. doi:10.3390/antibiotics3030270
  • Hauser J, Esenwein SA, Awakowicz P, Steinau HU, Köller M, Halfmann H. 2011. Sterilization of heat-sensitive silicone implant material by low-pressure gas plasma. Biomed Instrum Technol. 45:75–79. doi:10.2345/0899-8205-45.1.75
  • Hazer DB, Sakar M, Dere Y, Altinkanat G, Ziyal MI, Hazer B. 2016. Antimicrobial effect of polymer-based silver nanoparticle coated pedicle screws: experimental research on biofilm inhibition in rabbits. Spine (Phila Pa 1976)). 41:E323–E329. doi:10.1097/BRS.0000000000001223
  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F. 1996. Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 20:1083–1091. doi:10.1111/j.1365-2958.1996.tb02548.x
  • Heimann RB. 2016. Plasma-sprayed hydroxylapatite-based coatings: chemical, mechanical, microstructural, and biomedical properties. J Therm Spray Tech. 25:827–850. doi:10.1007/s11666-016-0421-9
  • Henein A. 2013. What are the limitations on the wider therapeutic use of phage? Bacteriophage. 3:e24872. doi:10.4161/bact.24872
  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, et al. 2003. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. Embo J. 22:3803–3815. doi:10.1093/emboj/cdg366
  • Hetrick EM, Schoenfisch MH. 2006. Reducing implant-related infections: active release strategies. Chem Soc Rev. 35:780–789. doi:10.1039/b515219b
  • Hetrick EM, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, Schoenfisch MH. 2008. Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. Acs Nano. 2:235–246. doi:10.1021/nn700191f
  • Hickok NJ, Shapiro IM. 2012. Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev. 64:1165–1176. doi:10.1016/j.addr.2012.03.015
  • Horsley H, Owen J, Browning R, Carugo D, Malone-Lee J, Stride E, Rohn JL. 2019. Ultrasound-activated microbubbles as a novel intracellular drug delivery system for urinary tract infection. J Control Release. 301:166–175. doi:10.1016/j.jconrel.2019.03.017
  • Hoyos-Nogués M, Buxadera-Palomero J, Ginebra MP, Manero JM, Gil FJ, Mas-Moruno C. 2018. All-in-one trifunctional strategy: a cell adhesive, bacteriostatic and bactericidal coating for titanium implants. Colloids Surf B Biointerfaces. 169:30–40. doi:10.1016/j.colsurfb.2018.04.050
  • Hu J, Zhang N, Li L, Zhang N, Ma Y, Zhao C, Wu Q, Li Y, He N, Wang X. 2018. The synergistic bactericidal effect of vancomycin on UTMD treated biofilm involves damage to bacterial cells and enhancement of metabolic activities. Sci Rep. 8:192. doi:10.1038/s41598-017-18496-3
  • Hui WL, Perrotti V, Iaculli F, Piattelli A, Quaranta A. 2020. The emerging role of cold atmospheric plasma in implantology: a review of the literature. Nanomaterials. 10:1505. doi:10.3390/nano10081505
  • Hur YE, Park Y. 2016. Vancomycin-functionalized gold and silver nanoparticles as an antibacterial nanoplatform against methicillin-resistant Staphylococcus aureus. J Nanosci Nanotechnol. 16:6393–6399. doi:10.1166/jnn.2016.12393
  • Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA. 2015. 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater. 30:232–247. doi:10.22203/ecm.v030a16
  • Iram NE, Khan MS, Jolly R, Arshad M, Alam M, Alam P, Khan RH, Firdaus F. 2015. Interaction mode of polycarbazole-titanium dioxide nanocomposite with DNA: molecular docking simulation and in-vitro antimicrobial study. J Photochem Photobiol B. 153:20–32. doi:10.1016/j.jphotobiol.2015.09.001
  • Jiang Q, Chen J, Yang C, Yin Y, Yao K. 2019. Quorum sensing: a prospective therapeutic target for bacterial diseases. Biomed Res Int. 2019:2015978. doi:10.1155/2019/2015978
  • Jiranek WA, Hanssen AD, Greenwald AS. 2006. Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg Am. 88:2487–2500. doi:10.2106/JBJS.E.01126
  • Joo HS, Fu CI, Otto M. 2016. Bacterial strategies of resistance to antimicrobial peptides. Phil Trans R Soc B. 371:20150292. doi:10.1098/rstb.2015.0292
  • Joosten U, Joist A, Gosheger G, Liljenqvist U, Brandt B, von Eiff C. 2005. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Biomaterials. 26:5251–5258. doi:10.1016/j.biomaterials.2005.01.001
  • Jose B, Antoci V, Jr, Zeiger AR, Wickstrom E, Hickok NJ. 2005. Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem Biol. 12:1041–1048. doi:10.1016/j.chembiol.2005.06.013
  • Josse J, Valour F, Maali Y, Diot A, Batailler C, Ferry T, Laurent F. 2019. Interaction between staphylococcal biofilm and bone: how does the presence of biofilm promote prosthesis loosening? Front Microbiol. 10:1602. doi:10.3389/fmicb.2019.01602
  • Kahl BC, Becker K, Loffler B. 2016. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev. 29:401–427. doi:10.1128/CMR.00069-15
  • Kahl BC, Becker K, Löffler B. 2016. Clinical significance and pathogenesis of staphylococcal small colony variants in persistent infections. Clin Microbiol Rev. 29:401–427. doi:10.1128/CMR.00069-15
  • Kalia VC, Wood TK, Kumar P. 2014. Evolution of resistance to quorum-sensing inhibitors. Microb Ecol. 68:13–23. doi:10.1007/s00248-013-0316-y
  • Kang J, Dietz MJ, Li B. 2019. Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS One. 14:e0216676. doi:10.1371/journal.pone.0216676
  • Kang SJ, Park SJ, Mishig-Ochir T, Lee BJ. 2014. Antimicrobial peptides: therapeutic potentials. Expert Rev Anti Infect Ther. 12:1477–1486. doi:10.1586/14787210.2014.976613
  • Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, Hölzemann G, Goodman SL, Kessler H. 2000. Surface coating with cyclic RGD peptides stimulates osteoblast adhesion and proliferation as well as bone formation. Chembio Chem. 1:107–114. doi:10.1002/1439-7633(20000818)1:2<107::AID-CBIC107>3.0.CO;2-4
  • Kaplan JB. 2009. Therapeutic potential of biofilm-dispersing enzymes. Int J Artif Organs. 32:545–554. doi:10.1177/039139880903200903
  • Karaman O, Kelebek S, Demirci EA, İbiş F, Ulu M, Ercan UK. 2018. Synergistic effect of cold plasma treatment and RGD peptide coating on cell proliferation over titanium surfaces. Tissue Eng Regen Med. 15:13–24. doi:10.1007/s13770-017-0087-5
  • Kasithevar M, Periakaruppan P, Muthupandian S, Mohan M. 2017. Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections. Microb Pathog. 107:327–334. doi:10.1016/j.micpath.2017.04.013
  • Kaur S, Harjai K, Chhibber S. 2014. Bacteriophage-aided intracellular killing of engulfed methicillin-resistant Staphylococcus aureus (MRSA) by murine macrophages. Appl Microbiol Biotechnol. 98:4653–4661. doi:10.1007/s00253-014-5643-5
  • Kaur S, Harjai K, Chhibber S. 2014. Local delivery of linezolid from poly-D,L-lactide (PDLLA)-linezolid-coated orthopaedic implants to prevent MRSA mediated post-arthroplasty infections. Diagn Microbiol Infect Dis. 79:387–392. doi:10.1016/j.diagmicrobio.2014.01.026
  • Kaur S, Harjai K, Chhibber S. 2016. In vivo assessment of phage and linezolid based implant coatings for treatment of methicillin resistant S. aureus (MRSA) mediated orthopaedic device related infections. PLoS One. 11:e0157626. doi:10.1371/journal.pone.0157626
  • Kazemzadeh-Narbat M, Noordin S, Masri BA, Garbuz DS, Duncan CP, Hancock REW, Wang R. 2012. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res B Appl Biomater. 100:1344–1352. doi:10.1002/jbm.b.32701
  • Keum H, Kim JY, Yu B, Yu SJ, Kim J, Jeon H, Lee DY, Im SG, Jon S. 2017. Prevention of bacterial colonization on catheters by a one-step coating process involving an Antibiofouling Polymer in Water . ACS Appl Mater Interfaces. 9:19736–19745. doi:10.1021/acsami.7b06899
  • Khalaf H, Hussien B, Alzubaidi T. 2018. Anti-bacterial evaluation of biocomposite coated dental implant after immersion in glycopeptide. Indian J Nat Sci. 8:49.
  • Khalifa L, Brosh Y, Gelman D, Coppenhagen-Glazer S, Beyth S, Poradosu-Cohen R, Que Y-A, Beyth N, Hazan R. 2015. Targeting Enterococcus faecalis biofilms with phage therapy. Appl Environ Microbiol. 81:2696–2705. doi:10.1128/AEM.00096-15
  • Khan F, Manivasagan P, Lee JW, Pham DTN, Oh J, Kim YM. 2019. Fucoidan-stabilized gold nanoparticle-mediated biofilm inhibition, attenuation of virulence and motility properties in Pseudomonas aeruginosa PAO1. Mar Drugs. 17:208. doi:10.3390/md17040208
  • Khatoon Z, McTiernan CD, Suuronen EJ, Mah TF, Alarcon EI. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 4:e01067. doi:10.1016/j.heliyon.2018.e01067
  • Kim MK, Zhao A, Wang A, Brown ZZ, Muir TW, Stone HA, Bassler BL. 2017. Surface-attached molecules control Staphylococcus aureus quorum sensing and biofilm development. Nat Microbiol. 2:17080. doi:10.1038/nmicrobiol.2017.80
  • Kishor C, Mishra RR, Saraf SK, Kumar M, Srivastav AK, Nath G. 2016. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res. 143:87–94. doi:10.4103/0971-5916.178615
  • Kose N, Çaylak R, Pekşen C, Kiremitçi A, Burukoglu D, Koparal S, Doğan A. 2016. Silver ion doped ceramic nano-powder coated nails prevent infection in open fractures: In vivo study. Injury. 47:320–324. doi:10.1016/j.injury.2015.10.006
  • Krzyżek P. 2019. Challenges and limitations of anti-quorum sensing therapies. Front Microbiol. 10:2473. doi:10.3389/fmicb.2019.02473
  • Kubica M, Guzik K, Koziel J, Zarebski M, Richter W, Gajkowska B, Golda A, Maciag-Gudowska A, Brix K, Shaw L, et al. 2008. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One. 3:e1409. doi:10.1371/journal.pone.0001409
  • Kumar A, Alam A, Rani M, Ehtesham NZ, Hasnain SE. 2017. Biofilms: survival and defense strategy for pathogens. Int J Med Microbiol. 307:481–489. doi:10.1016/j.ijmm.2017.09.016
  • Kuo D, Yu G, Hoch W, Gabay D, Long L, Ghannoum M, Nagy N, Harding CV, Viswanathan R, Shoham M. 2015. Novel quorum-quenching agents promote methicillin-resistant Staphylococcus aureus (MRSA) wound healing and sensitize MRSA to β-lactam antibiotics. Antimicrob Agents Chemother. 59:1512–1518. doi:10.1128/AAC.04767-14
  • Kuper M, Rosenstein A. 2008. Infection prevention in total knee and total hip arthroplasties. Am J Orthop (Belle Mead NJ)). 37:E2–E5.
  • Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. 2008. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty. 23:984–991. doi:10.1016/j.arth.2007.10.017
  • Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J. 2012. Economic burden of periprosthetic joint infection in the United States. J Arthroplasty. 27:61–65.e1. doi:10.1016/j.arth.2012.02.022
  • Kutateladze M, Adamia R. 2010. Bacteriophages as potential new therapeutics to replace or supplement antibiotics. Trends Biotechnol. 28:591–595. doi:10.1016/j.tibtech.2010.08.001
  • Lade H, Paul D, Kweon JH. 2014. Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci. 10:550–565. doi:10.7150/ijbs.9028
  • LaSarre B, Federle MJ. 2013. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev. 77:73–111. doi:10.1128/MMBR.00046-12
  • Latka A, Maciejewska B, Majkowska-Skrobek G, Briers Y, Drulis-Kawa Z. 2017. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol. 101:3103–3119. doi:10.1007/s00253-017-8224-6
  • Lattwein KR, Shekhar H, Kouijzer JJP, van Wamel WJB, Holland CK, Kooiman K. 2020. Sonobactericide: an emerging treatment strategy for bacterial infections. Ultrasound Med Biol. 46:193–215. doi:10.1016/j.ultrasmedbio.2019.09.011
  • Lawson MC, Hoth KC, Deforest CA, Bowman CN, Anseth KS. 2010. Inhibition of Staphylococcus epidermidis biofilms using polymerizable vancomycin derivatives. Clin Orthop Relat Res. 468:2081–2091. doi:10.1007/s11999-010-1266-z
  • Lee J, Zhang L. 2015. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 6:26–41. doi:10.1007/s13238-014-0100-x
  • Lemire JA, Kalan L, Bradu A, Turner RJ. 2015. Silver oxynitrate, an unexplored silver compound with antimicrobial and antibiofilm activity. Antimicrob Agents Chemother. 59:4031–4039. doi:10.1128/AAC.05177-14
  • Lentino JR. 2003. Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis. 36:1157–1161. doi:10.1086/374554
  • Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C. 2013. Nanoparticle adhesion to the cell membrane and its effect on nano-particle uptake efficiency. J Am Chem Soc. 135:1438–1444. doi:10.1021/ja309812z
  • Leuba KD, Durmus NG, Taylor EN, Webster TJ. 2013. Short communication: Carboxylate functionalized super paramagnetic iron oxide nanoparticles (SPION) for the reduction of S. aureus growth post biofilm formation. Int J Nanomed. 8:731–736.
  • Lewies A, Du Plessis LH, Wentzel JF. 2019. Antimicrobial peptides: the achilles' heel of antibiotic resistance? Probiotics Antimicrob Prot. 11:370–381. doi:10.1007/s12602-018-9465-0
  • Lewies A, Du Plessis LH, Wentzel JF. 2019. Antimicrobial peptides: the achilles' heel of antibiotic resistance? Probiotics Antimicrob Prot. 11:370–381. doi:10.1007/s12602-018-9465-0
  • Li X, Contreras-Garcia A, LoVetri K, Yakandawala N, Wertheimer MR, De Crescenzo G, Hoemann CD. 2015. Fusion peptide P15-CSP shows antibiofilm activity and pro-osteogenic activity when deposited as a coating on hydrophilic but not hydrophobic surfaces. J Biomed Mater Res A. 103:3736–3746. doi:10.1002/jbm.a.35511
  • Li Y, Huang J, Li L, Liu L. 2017. Synergistic activity of berberine with azithromycin against Pseudomonas aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cell Physiol Biochem. 42:1657–1669. doi:10.1159/000479411
  • Li Y, Song Y, Ma A, Li C. 2019. Surface immobilization of TiO2 nanotubes with bone morphogenetic protein-2 synergistically enhances initial preosteoblast adhesion and osseointegration. Biomed Res Int. 2019:5697250. doi:10.1155/2019/5697250
  • Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 4:178. doi:10.3389/fcimb.2014.00178
  • Lister JL, Horswill AR. 2014. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol. 4:178. doi:10.3389/fcimb.2014.00178
  • Liu L, Bhatia R, Webster TJ. 2017. Atomic layer deposition of nano-TiO2 thin films with enhanced biocompatibility and antimicrobial activity for orthopedic implants. Int J Nanomed. 12:8711–8723. doi:10.2147/IJN.S148065
  • Liu Z, Ma S, Duan S, Xuliang D, Sun Y, Zhang X, Xu X, Guan B, Wang C, Hu M, et al. 2016. Modification of titanium substrates with chimeric peptides comprising antimicrobial and titanium-binding motifs connected by linkers to inhibit biofilm formation. ACS Appl Mater Interfaces. 8:5124–5136. doi:10.1021/acsami.5b11949
  • Los A, Ziuzina D, Boehm D, Han L, O'Sullivan D, O'Neill L, Bourke P. 2019. Efficacy of cold plasma for direct deposition of antibiotics as a novel approach for localized delivery and retention of effect. Front Cell Infect Microbiol. 9:428. doi:10.3389/fcimb.2019.00428
  • Lu TK, Collins JJ. 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci USA. 104:11197–11202. doi:10.1073/pnas.0704624104
  • Lucke M, Schmidmaier G, Sadoni S, Wildemann B, Schiller R, Haas NP, Raschke M. 2003. Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone. 32:521–531. doi:10.1016/s8756-3282(03)00050-4
  • Luo J, Dong B, Wang K, Cai S, Liu T, Cheng X, Lei D, Chen Y, Li Y, Kong J, et al. 2017. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One. 12:e0176883. doi:10.1371/journal.pone.0176883
  • LuTheryn G, Glynne-Jones P, Webb JS, Carugo D. 2020. Ultrasound-mediated therapies for the treatment of biofilms in chronic wounds: a review of present knowledge. Microb Biotechnol. 13:613–628. doi:10.1111/1751-7915.13471
  • Ma M, Kazemzadeh-Narbat M, Hui Y, Lu S, Ding C, Chen DDY, Hancock REW, Wang R. 2012. Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J Biomed Mater Res A. 100:278–285. doi:10.1002/jbm.a.33251
  • Maciejewska B, Olszak T, Drulis-Kawa Z. 2018. Applications of bacteriophages versus phage enzymes to combat and cure bacterial infections: an ambitious and also a realistic application? Appl Microbiol Biotechnol. 102:2563–2581. doi:10.1007/s00253-018-8811-1
  • Magyari K, Nagy-Simon T, Vulpoi A, Popescu RA, Licarete E, Stefan R, Hernádi K, Papuc I, Baia L. 2017. Novel bioactive glass-AuNP composites for biomedical applications. Mater Sci Eng C Mater Biol Appl. 76:752–759. doi:10.1016/j.msec.2017.03.138
  • Mah TF, O'Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9:34–39. doi:10.1016/S0966-842X(00)01913-2
  • Malik DJ, Sokolov IJ, Vinner GK, Mancuso F, Cinquerrui S, Vladisavljevic GT, Clokie MRJ, Garton NJ, Stapley AGF, Kirpichnikova A. 2017. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 249:100–133. doi:10.1016/j.cis.2017.05.014
  • Mangano F, Chambrone L, van Noort R, Miller C, Hatton P, Mangano C. 2014. Direct metal laser sintering titanium dental implants: a review of the current literature. Int J Biomater. 2014:461534. doi:10.1155/2014/461534
  • Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. 1999. Guideline for prevention of surgical site infection. Centers for Disease Control and Prevention Hospital Infection Control Practices Advisory Committee. Am J Infect Control. 27:97–132.
  • Mansour SC, de la Fuente-Núñez C, Hancock RE. 2015. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci. 21:323–329. doi:10.1002/psc.2708
  • Mansour SC, Pena OM, Hancock RE. 2014. Host defense peptides: front-line immunomodulators. Trends Immunol. 35:443–450. doi:10.1016/j.it.2014.07.004
  • Markowska K, Grudniak AM, Wolska KI. 2013. Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol. 60:523–530.
  • Martínez LC, Vadyvaloo V. 2014. Mechanisms of post-transcriptional gene regulation in bacterial biofilms. Front Cell Infect Microbiol. 4:38. doi:10.3389/fcimb.2014.00038
  • Mathur P, Jha S, Ramteke S, Jain NK. 2018. Pharmaceutical aspects of silver nanoparticles. Artif Cells Nanomed Biotechnol. 46:115–126. doi:10.1080/21691401.2017.1414825
  • Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman MD, et al. 2003. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage phi MR11. J Infect Dis. 187:613–624. doi:10.1086/374001
  • McCaskie AW, Richardson JB, Gregg PJ. 1998. Further uses of polymethylmethacrylate in orthopaedic surgery. J R Coll Surg Edinb. 43:37–39.
  • McConoughey SJ, Howlin R, Granger JF, Manring MM, Calhoun JH, Shirtliff M, Kathju S, Stoodley P. 2014. Biofilms in periprosthetic orthopedic infections. Future Microbiol. 9:987–1007. doi:10.2217/fmb.14.64
  • Memarzadeh K, Sharili AS, Huang J, Rawlinson SC, Allaker RP. 2015. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res A. 103:981–989. doi:10.1002/jbm.a.35241
  • Metsemakers W-J, Morgenstern M, Senneville E, Borens O, Govaert GAM, Onsea J, Depypere M, Richards RG, Trampuz A, Verhofstad MHJ, et al. 2020. General treatment principles for fracture-related infection: recommendations from an international expert group. Arch Orthop Trauma Surg. 140:1013–1027. doi:10.1007/s00402-019-03287-4
  • Miola M, Fucale G, Maina G, Verné E. 2015. Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles. Biomed Mater. 10:055014. doi:10.1088/1748-6041/10/5/055014
  • Mohamed MF, Abdelkhalek A, Seleem MN. 2016. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep. 6:29707. doi:10.1038/srep29707
  • Mohamed W, Sommer U, Sethi S, Domann E, Thormann U, Schütz I, Lips KS, Chakraborty T, Schnettler R, Alt V, et al. 2014. Intracellular proliferation of S. aureus in osteoblasts and effects of rifampicin and gentamicin on S. aureus intracellular proliferation and survival. Eur Cell Mater. 28:258–268. doi:10.22203/ecm.v028a18
  • Møller IM, Jensen PE, Hansson A. 2007. Oxidative modifications to cellular components in plants. Annu Rev Plant Biol. 58:459–481. doi:10.1146/annurev.arplant.58.032806.103946
  • Mootz JM, Malone CL, Shaw LN, Horswill AR. 2013. Staphopains modulate Staphylococcus aureus biofilm integrity. Infect Immun. 81:3227–3238. doi:10.1128/IAI.00377-13
  • Mora-Boza A, Aparicio FJ, Alcaire M, López-Santos C, Espinós JP, Torres-Lagares D, Borrás A, Barranco A. 2019. Multifunctional antimicrobial chlorhexidine polymers by remote plasma assisted vacuum deposition. Front Chem Sci Eng. 13:330–339. doi:10.1007/s11705-019-1803-6
  • Moriarty TF, Kuehl R, Coenye T, Metsemakers W-J, Morgenstern M, Schwarz EM, Riool M, Zaat SAJ, Khana N, Kates SL, et al. 2016. Orthopaedic device-related infection: current and future interventions for improved prevention and treatment. EFORT Open Rev. 1:89–99. doi:10.1302/2058-5241.1.000037
  • Morris JL, Letson HL, Elliott L, Grant AL, Wilkinson M, Hazratwala K, McEwen P. 2019. Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus. PLoS One. 14:e0226574 doi:10.1371/journal.pone.0226574
  • Múgica-Vidal R, Sainz-García E, Álvarez-Ordóñez A, Prieto M, González-Raurich M, López M, López M, Rojo-Bezares B, Sáenz Y, Alba-Elías F, et al. 2019. Production of antibacterial coatings through atmospheric pressure plasma: a promising alternative for combatting biofilms in the food industry. Food Bioprocess Technol. 12:1251–1263. doi:10.1007/s11947-019-02293-z
  • Nahar S, Mizan MFR, Ha AJW, Ha SD. 2018. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Compr Rev Food Sci Food Saf. 17:1484–1502. doi:10.1111/1541-4337.12382
  • Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM. 2012. Endolysins as antimicrobials. Adv Virus Res. 83:299–365. doi:10.1016/B978-0-12-394438-2.00007-4
  • Neupane MP, Lee SJ, Park IS, Lee MH, Bae TS, Kuboki Y, Uo M, Watari F. 2011. Synthesis of gelatin-capped gold nanoparticles with variable gelatin concentration. J Nanopart Res. 13:491–498. doi:10.1007/s11051-010-9971-9
  • Nijnik A, Hancock R. 2009. Host defence peptides: antimicrobial and immunomodulatory activity and potential applications for tackling antibiotic-resistant infections. Emerg Health Threats J. 2:e1 doi:10.3134/ehtj.09.001
  • Nilsson AS. 2019. Pharmacological limitations of phage therapy. Ups J Med Sci. 124:218–227. doi:10.1080/03009734.2019.1688433
  • O’Connor C, Kiourti A. 2017. Wireless sensors for smart orthopedic implants. J Bio Tribo Corros. 3:20. doi:10.1007/s40735-017-0078-z
  • Obremskey WT, Bhandari M, Dirschl DR, Shemitsch E. 2003. Internal fixation versus arthroplasty of comminuted fractures of the distal humerus. J Orthop Trauma. 17:463–465. doi:10.1097/00005131-200307000-00014
  • O'Halloran DP, Wynne K, Geoghegan JA. 2015. Protein A is released into the Staphylococcus aureus culture supernatant with an unprocessed sorting signal. Infect Immun. 83:1598–1609. doi:10.1128/IAI.03122-14
  • Okshevsky M, Regina VR, Meyer RL. 2015. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol. 33:73–80. doi:10.1016/j.copbio.2014.12.002
  • Olsen N, Thiran E, Hasler T, Vanzieleghem T, Belibasakis G, Mahillon J, Loessner M, Schmelcher M. 2018. Synergistic Removal of static and dynamic Staphylococcus aureus biofilms by combined treatment with a bacteriophage endolysin and a polysaccharide depolymerase. Viruses. 10:438. doi:10.3390/v10080438
  • Onsea J, Soentjens P, Djebara S, et al. 2019. Bacteriophage application for difficult-to-treat musculoskeletal infections: development of a standardized multidisciplinary treatment protocol. Viruses. 11:891. doi:10.3390/v11100891
  • Ooi N, Miller K, Randall C, Rhys-Williams W, Love W, Chopra I. 2010. XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms. J Antimicrob Chemother. 65:72–78. doi:10.1093/jac/dkp409.
  • Otto M. 2008. Staphylococcal biofilms. Curr Top Microbiol Immunol. 322:207–228. doi:10.1007/978-3-540-75418-3_10
  • Otto M. 2014. Phenol-soluble modulins. Int J Med Microbiol. 304:164–169. doi:10.1016/j.ijmm.2013.11.019
  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. 2008. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 76:4176–4182. doi:10.1128/IAI.00318-08
  • Padmavathy N, Vijayaraghavan R. 2008. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 9:035004. doi:10.1088/1468-6996/9/3/035004
  • Paharik AE, Horswill AR. 2016. The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr. 4: 529–566. doi:10.1128/microbiolspec.VMBF-0022-2015
  • Pajarinen J, Jamsen E, Konttinen YT, Goodman SB. 2014.Innate immune reactions in septic and aseptic osteolysis around hip implants. J Long Term Eff Med Implant. 24(4):283–296. doi:10.1615/jlongtermeffmedimplants.2014010564
  • Paluch E, Rewak-Soroczyńska J, Jędrusik I, Mazurkiewicz E, Jermakow K. 2020. Prevention of biofilm formation by quorum quenching. Appl Microbiol Biotechnol. 104:1871–1881. doi:10.1007/s00253-020-10349-w
  • Pan C, Zhou Z, Yu X. 2018. Coatings as the useful drug delivery system for the prevention of implant-related infections. J Orthop Surg Res. 13:220. doi:10.1186/s13018-018-0930-y
  • Papenfort K, Bassler BL. 2016. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 14:576–588. doi:10.1038/nrmicro.2016.89
  • Parisi TJ, Konopka JF, Bedair HS. 2017. What is the long-term economic societal effect of periprosthetic infections after THA? A Markov Analysis. Clin Orthop Relat Res. 475:1891–1900. doi:10.1007/s11999-017-5333-6
  • Parlet CP, Kavanaugh JS, Crosby HA, Raja HA, El-Elimat T, Todd DA, Pearce CJ, Cech NB, Oberlies NH, Horswill AR, et al. 2019. Apicidin attenuates MRSA virulence through quorum-sensing Inhibition and Enhanced Host Defense. Cell Rep. 27:187–198.e6. doi:10.1016/j.celrep.2019.03.018
  • Parvizi J, Ghanem E, Azzam K, Davis E, Jaberi F, Hozack W. 2008. Periprosthetic infection: are current treatment strategies adequate? Acta Orthop Belg. 74:793–800.
  • Patey O, McCallin S, Mazure H, Liddle M, Smithyman A, Dublanchet A. 2018. Clinical indications and compassionate use of phage therapy: personal experience and literature review with a focus on osteoarticular infections. Viruses. 11:18. doi:10.3390/v11010018
  • Pavlukhina SV, Kaplan JB, Xu L, Chang W, Yu X, Madhyastha S, Yakandawala N, Mentbayeva A, Khan B, Sukhishvili SA, et al. 2012. Noneluting enzymatic antibiofilm coatings . ACS Appl Mater Interfaces. 4:4708–4716. doi:10.1021/am3010847
  • Pavoni GL, Giannella M, Falcone M, Scorzolini L, Liberatore M, Carlesimo B, Venditti M, Serra P. 2004. Conservative medical therapy of prosthetic joint infections: retrospective analysis of an 8-year experience. Clin Microbiol Infect, 10(9):831–837. doi:10.1111/j.1469-0691.2004.00928.x
  • Peng H, Borg RE, Dow LP, Pruitt BL, Chen IA. 2020. Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages. Proc Natl Acad Sci USA. 117:1951–1961. doi:10.1073/pnas.1913234117
  • Peng Z, Ni J, Zheng K, Shen Y, Wang X, He G, Jin S, Tang T. 2013. Dual effects and mechanism of TiO2 nanotube arrays in reducing bacterial colonization and enhancing C3H10T1/2 cell adhesion. Int J Nanomedicine. 8:3093–3105. doi:10.2147/IJN.S48084
  • Perez K, Patel R. 2015. Biofilm-like aggregation of Staphylococcus epidermidis in synovial fluid. J Infect Dis. 212:335–336. doi:10.1093/infdis/jiv096
  • Perez K, Patel R. 2018. Survival of Staphylococcus epidermidis in fibroblasts and osteoblasts. Infect Immun. 86:e00237–18. doi:10.1128/IAI.00237-18
  • Periasamy S, Chatterjee SS, Cheung GY, Otto M. 2012. Phenol-soluble modulins in staphylococci: what are they originally for? Commun Integr Biol. 5:275–277. doi:10.4161/cib.19420
  • Pestrak MJ, Gupta TT, Dusane DH, Guzior DV, Staats A, Harro J, Horswill AR, Stoodley P. 2020. Correction: Investigation of synovial fluid induced Staphylococcus aureus aggregate development and its impact on surface attachment and biofilm formation. PLoS One. 15:e0233534. doi:10.1371/journal.pone.0231791
  • Petersen RC. 2014. Titanium implant osseointegration problems with alternate solutions using epoxy/carbon-fiber-reinforced composite. Metals (Basel). 24(4):549–569. doi:10.3390/met4040549
  • Pfeufer NY, Hofmann-Peiker K, Mühle M, Warnke PH, Weigel MC, Kleine M. 2011. Bioactive coating of titanium surfaces with recombinant human β-defensin-2 (rHuβD2) may prevent bacterial colonization in orthopaedic surgery. J Bone Joint Surg Am. 93:840–846. doi:10.2106/JBJS.I.01738
  • Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK. 2016. Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev. 80:523–543. doi:10.1128/MMBR.00069-15
  • Pleshko N, Grande DA, Myers KR. 2012. Nanotechnology in orthopaedics. J Am Acad Orthop Surg. 20:60–62. doi:10.5435/JAAOS-20-01-060
  • Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK, Phong Nguyen TH, Boshkovikj V, Fluke CJ, Watson GS, Watson JA, et al. 2013. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys J. 104:835–840. doi:10.1016/j.bpj.2012.12.046
  • Pradhaban G, Kaliaraj GS, Vishwakarma V. 2014. Antibacterial effects of silver-zirconia composite coatings using pulsed laser deposition onto 316L SS for bio implants. Prog Biomater. 3:123–130. doi:10.1007/s40204-014-0028-5
  • Principi N, Silvestri E, Esposito S. 2019. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front Pharmacol. 10:513. doi:10.3389/fphar.2019.00513
  • Proctor RA, Kriegeskorte A, Kahl BC, Becker K, Löffler B, Peters G. 2014. Staphylococcus aureus small colony variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Front Cell Infect Microbiol. 4:99. doi:10.3389/fcimb.2014.00099
  • Qais FA, Shafiq A, Ahmad I, Husain FM, Khan RA, Hassan I. 2020. Green synthesis of silver nanoparticles using Carum copticum: assessment of its quorum sensing and biofilm inhibitory potential against gram negative bacterial pathogens. Microb Pathog. 144:104172. doi:10.1016/j.micpath.2020.104172
  • Qasim SN, Swann A, Ashford R. 2017. The DAIR (debridement, antibiotics and implant retention) procedure for infected total knee replacement – a literature review. SICOT J. 3:2. doi: 10.1051/sicotj/2016038.
  • Qin H, Cao H, Zhao Y, Zhu C, Cheng T, Wang Q, Peng X, Cheng M, Wang J, Jin G, et al. 2014. In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium . Biomaterials. 35:9114–9125. doi:10.1016/j.biomaterials.2014.07.040
  • Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. 2018. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed. 13:3311–3327. doi:10.2147/IJN.S165125
  • Rajamäki K, Nordström T, Nurmi K, Åkerman KEO, Kovanen PT, Öörni K, Eklund KK. 2013. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem. 288:13410–13419. doi:10.1074/jbc.M112.426254
  • Rao Y, Shang W, Yang Y, Zhou R, Rao X. 2020. Fighting mixed-species microbial biofilms with cold atmospheric Plasma. Front Microbiol. 11:1000. doi:10.3389/fmicb.2020.01000
  • Raulli R, McElhaney-Feser G, Hrabie JA, Cihlar RL. 2002. Antimicrobial properties of nitric oxide using diazeniumdiolates as the nitric oxide donor. Rec Res Devel Microbiol. 6:177–183.
  • Rauschmann MA, Wichelhaus TA, Stirnal V, Dingeldein E, Zichner L, Schnettler R, Alt V. 2005. Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 26:2677–2684. doi:10.1016/j.biomaterials.2004.06.045
  • Recek N. 2019. Biocompatibility of plasma-treated polymeric implants. Materials (Basel). 12:240. doi:10.3390/ma12020240
  • Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock RE. 2014. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother. 58:5363–5371. doi:10.1128/AAC.03163-14
  • Reffuveille F, de la Fuente-Nunez C, Mansour S, Hancock REW. 2014. A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother. 58: 5363–5371. doi:10.1128/AAC.03163-14.
  • Rémy B, Mion S, Plener L, Elias M, Chabrière E, Daudé D. 2018. Interference in bacterial quorum sensing: a biopharmaceutical perspective. Front Pharmacol. 9:203. doi:10.3389/fphar.2018.00203
  • Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SAJ. 2017. Antimicrobial peptides in biomedical device manufacturing. Front Chem. 5:63. doi:10.3389/fchem.2017.00063
  • Rodríguez-Rubio L, Martínez B, Donovan DM, García P, Rodríguez A. 2013. Potential of the virion-associated peptidoglycan hydrolase HydH5 and its derivative fusion proteins in milk biopreservation. PLoS One. 8:e54828. doi:10.1371/journal.pone.0054828
  • Roiniotis J, Dinh H, Masendycz P, Turner A, Elsegood CL, Scholz GM, Hamilton JA. 2009. Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol. 182:7974–7981. doi:10.4049/jimmunol.0804216
  • Romanò CL, Scarponi S, Gallazzi E, Romanò D, Drago L. 2015. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. J Orthop Surg Res. 10:157. doi:10.1186/s13018-015-0294-5
  • Roy M, Bandyopadhyay A, Bose S. 2011. Induction plasma sprayed nano hydroxyapatite coatings on titanium for orthopaedic and dental implants. Surf Coat Technol. 205:2785–2792. doi:10.1016/j.surfcoat.2010.10.042
  • Roy R, Tiwari M, Donelli G, Tiwari V. 2018. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 9:522–554. doi:10.1080/21505594.2017.1313372
  • Rupel K, Zupin L, Ottaviani G, Bertani I, Martinelli V, Porrelli D, Vodret S, Vuerich R, Passos da Silva D, Bussani R, et al. 2019. Blue laser light inhibits biofilm formation in vitro and in vivo by inducing oxidative stress. NPJ Biofilms Microbiomes. 5:29. doi:10.1038/s41522-019-0102-9
  • Saggu SK, Jha G, Mishra PC. 2019. Enzymatic degradation of biofilm by metalloprotease from Microbacterium sp. SKS10. Front Bioeng Biotechnol. 7:192. doi:10.3389/fbioe.2019.00192
  • Saha B, Bhattacharya J, Mukherjee A, Ghosh AK, Santra CR, Dasgupta AK, Karmakar P. 2007. In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett. 2:614–622. doi:10.1007/s11671-007-9104-2
  • Sardella E, Palumbo F, Camporeale G, Favia P. 2016. Non-equilibrium plasma processing for the preparation of antibacterial surfaces. Materials (Basel). 9:515. doi:10.3390/ma9070515
  • Schaeffer CR, Woods KM, Longo GM, Kiedrowski MR, Paharik AE, Büttner H, Christner M, Boissy RJ, Horswill AR, Rohde H, et al. 2015. Accumulation-associated protein enhances Staphylococcus epidermidis biofilm formation under dynamic conditions and is required for infection in a rat catheter model. Infect Immun. 83:214–226. doi:10.1128/IAI.02177-14
  • Scheper H, Verhagen J, deVisser A, van der Wal R, Wubbolts J, Visser LG, Boer MGJD, Nibbering PH. 2019. Antimicrobial peptides eradicate bacteria, including persisters, in antibiotic-treated mature biofilms. In: Orthopaedic Proceedings. 101-B:
  • Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M. 2006. Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury. 37: S105–S112. doi:10.1016/j.injury.2006.04.016
  • Sebastian S, Malhotra R, Dhawan B. 2018. Prosthetic joint infection: a major threat to successful total joint arthroplasty. Indian J Med Microbiol. 36:475–487. doi:10.4103/ijmm.IJMM_19_11
  • Sendi P, Rohrbach M, Graber P, Frei R, Ochsner PE, Zimmerli W. 2006. Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis. 43:961–967. doi:10.1086/507633
  • Sendi P, Zimmerli W. 2012. Antimicrobial treatment concepts for orthopaedic device-related infection. Clin Microbiol Infect.18(12):1176–1184. doi:10.1111/1469-0691.12003
  • Shakiba A, Zenasni O, Marquez MD, Randall Lee T. 2017. Advanced drug delivery via self-assembled monolayer-coated nanoparticles. AIMS Bioeng. 4:275–299. doi:10.3934/bioeng.2017.2.275
  • Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. 2015. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol. 29:235–241. doi:10.1016/j.jtemb.2014.07.020
  • Shaw P, Kumar N, Kwak HS, Park JH, Uhm HS, Bogaerts A, Choi EH, Attri P. 2018. Bacterial inactivation by plasma treated water enhanced by reactive nitrogen species. Sci Rep. 8:11268. doi:10.1038/s41598-018-29549-6
  • Shimazaki T, Miyamoto H, Ando Y, Noda I, Yonekura Y, Kawano S, Miyazaki M, Mawatari M, Hotokebuchi T. 2009. In vivo antibacterial and silver-releasing properties of novel thermal sprayed silver-containing hydroxyapatite coating. J Biomed Mater Res. 9999B:NA–389. doi:10.1002/jbm.b.31526
  • Shirai T, Tsuchiya H, Terauchi R, Tsuchida S, Mizoshiri N, Mori Y, Takeuchi A, Hayashi K, Yamamoto N, Ikoma K, et al. 2019. A retrospective study of antibacterial iodine-coated implants for postoperative infection. Medicine (Baltimore)). 98:e17932. doi:10.1097/MD.0000000000017932
  • Silva RR, Avelino KY, Ribeiro KL, Franco OL, Oliveira MD, Andrade CA. 2016. Chemical immobilization of antimicrobial peptides on biomaterial surfaces. Front Biosci (Schol Ed)). 8:129–142. doi:10.2741/s453
  • Simonetti O, Cirioni O, Cacciatore I, Baldassarre L, Orlando F, Pierpaoli E, Lucarini G, Orsetti E, Provinciali M, Fornasari E, et al. 2016. Efficacy of the quorum sensing inhibitor FS10 alone and in combination with tigecycline in an animal model of staphylococcal infected wound. PLoS One. 11:e0151956. doi:10.1371/journal.pone.0151956
  • Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. 2018. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci. 19:1979. doi:10.3390/ijms19071979
  • Singla S, Harjai K, Katare OP, Chhibber S. 2016. Encapsulation of bacteriophage in liposome accentuates its entry in to macrophage and shields it from neutralizing antibodies. PLoS One. 11:e0153777. doi:10.1371/journal.pone.0153777
  • Slavin YN, Asnis J, Häfeli UO, Bach H. 2017. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 15:65. doi:10.1186/s12951-017-0308-z
  • Smith WR, Hudson PW, Ponce BA, Rajaram Manoharan SR. 2018. Nanotechnology in orthopedics: a clinically oriented review. BMC Musculoskelet Disord. 19:67. doi:10.1186/s12891-018-1990-1
  • Smyth AR, Cifelli PM, Ortori CA, Righetti K, Lewis S, Erskine P, Holland ED, Givskov M, Williams P, Cámara M, Barrett DA, et al. 2010. Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis-a pilot randomized controlled trial. Pediatr Pulmonol. 45:356–362. doi:10.1002/ppul.21193
  • Spangehl MJ, Masri BA, O'Connell JX, Duncan CP. 1999. Prospective analysis of preoperative and intraoperative investigations for the diagnosis of infection at the sites of two hundred and two revision total hip arthroplasties. J Bone Joint Surg Am. 81:672–683.
  • Stigter M, Bezemer J, de Groot K, Layrolle P. 2004. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release. 99:127–137. doi:10.1016/j.jconrel.2004.06.011
  • Stoodley P, Ehrlich GD, Sedghizadeh PP, Hall-Stoodley L, Baratz ME, Altman DT, Sotereanos NG, Costerton JW, Demeo P. 2011. Orthopaedic biofilm infections. Curr Orthop Pract. 22:558–563. doi:10.1097/BCO.0b013e318230efcf
  • Su Y, Zheng X, Chen Y, Li M, Liu K. 2015. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles . Sci Rep. 5:15824. doi:10.1038/srep15824
  • Sufian MM, Khattak JZK, Yousaf S, Rana MS. 2017. Safety issues associated with the use of nanoparticles in human body. Photodiagnosis Photodyn Ther. 19:67–72. doi:10.1016/j.pdpdt.2017.05.012
  • Sulakvelidze A, Alavidze Z, Morris JG. Jr. 2001. Bacteriophage therapy. Antimicrob Agents Chemother. 45:649–659. doi:10.1128/AAC.45.3.649-659.2001
  • Sullivan MP, McHale KJ, Parvizi J, Mehta S. 2014. Nanotechnology: current concepts in orthopaedic surgery and future directions. Bone Joint J. 96-B:569–573. doi:10.1302/0301-620X.96B5.33606
  • Sully EK, Malachowa N, Elmore BO, Alexander SM, Femling JK, Gray BM, DeLeo FR, Otto M, Cheung AL, Edwards BS, et al. 2014. Selective chemical inhibition of agr quorum sensing in Staphylococcus aureus promotes host defense with minimal impact on resistance. PLoS Pathog. 10:e1004174. doi:10.1371/journal.ppat.1004174
  • Sutton JM, Pritts TA. 2014. Human beta-defensin 3: a novel inhibitor of Staphylococcus-produced biofilm production. Commentary on "Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation". J Surg Res. 186:99–100. doi:10.1016/j.jss.2013.03.077
  • Svensson S, Trobos M, Hoffman M, Norlindh B, Petronis S, Lausmaa J, Suska F, Thomsen P. 2015. A novel soft tissue model for biomaterial-associated infection and inflammation - bacteriological, morphological and molecular observations. Biomaterials. 41:106–121. doi:10.1016/j.biomaterials.2014.11.032
  • Sybesma W, Rohde C, Bardy P, Pirnay JP, Cooper I, Caplin J, Chanishvili N, Coffey A, De Vos D, Scholz AH, et al. 2018. Silk route to the acceptance and re-Implementation of bacteriophage therapy-Part II. Antibiotics (Basel). 7:35. doi:10.3390/antibiotics7020035
  • Tande AJ, Patel R. 2014. Prosthetic joint infection. Clin Microbiol Rev. 27:302–345. doi:10.1128/CMR.00111-13
  • Tang K, Zhang XH. 2014. Quorum quenching agents: resources for antivirulence therapy. Mar Drugs. 12:3245–3282. doi:10.3390/md12063245
  • Teirlinck E, Xiong R, Brans T, Forier K, Fraire J, Van Acker H, Matthijs N, De Rycke R, De Smedt SC, Coenye T, et al. 2018. Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat Commun. 9:4518 doi:10.1038/s41467-018-06884-w
  • Thakral G, Thakral R, Sharma N, Seth J, Vashisht P. 2014. Nanosurface - the future of implants. J Clin Diagn Res. 8:ZE07–ZE10. doi:10.7860/JCDR/2014/8764.4355
  • Theinkom F, Singer L, Cieplik F, Cantzler S, Weilemann H, Cantzler M, Hiller K-A, Maisch T, Zimmermann JL. 2019. Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One. 14:e0223925. doi:10.1371/journal.pone.0223925
  • Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. 2011. Peptide signaling in the staphylococci. Chem Rev. 111:117–151. doi:10.1021/cr100370n.
  • Tkhilaishvili T, Lombardi L, Klatt AB, Trampuz A, Di Luca M. 2018. Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int J Antimicrob Agents. 52:842–853. doi:10.1016/j.ijantimicag.2018.09.006
  • Tran PA, O'Brien-Simpson N, Palmer JA, Bock N, Reynolds EC, Webster TJ, Deva A, Morrison WA, O'Connor AJ. 2019. Selenium nanoparticles as anti-infective implant coatings for trauma orthopedics against methicillin-resistant Staphylococcus aureus and epidermidis: in vitro and in vivo assessment. Int J Nanomed. 14:4613–4624. doi:10.2147/IJN.S197737
  • Tran PA, Webster TJ. 2013. Antimicrobial selenium nanoparticle coatings on polymeric medical devices. Nanotechnology. 24:155101. doi:10.1088/0957-4484/24/15/155101
  • Trentin DS, Bonatto F, Zimmer KR, Ribeiro VB, Antunes ALS, Barth AL, Soares GV, Krug C, Baumvol IJR, Macedo AJ, et al. 2014. N2/H2plasma surface modifications of polystyrene inhibit the adhesion of multidrug resistant bacteria. Surf Coat Technol. 245:84–91. doi:10.1016/j.surfcoat.2014.02.046
  • Tung H-s, Guss B, Hellman U, Persson L, Rubin K, Rydén C. 2000. A bone sialoprotein-binding protein from Staphylococcus aureus: a member of the staphylococcal Sdr family. Biochem J. 345: 611–619. doi:10.1042/bj3450611
  • Ujino D, Nishizaki H, Higuchi S, Komasa S, Okazaki J. 2019. Effect of plasma treatment of titanium surface on biocompatibility. J Appl Sci. 9:2257. doi:10.3390/app9112257
  • Ungor D, Dékány I, Csapó E. 2019. Reduction of tetrachloroaurate(Iii) ions with bioligands: role of the thiol and amine functional groups on the structure and optical features of gold nanohybrid systems. Nanomaterials. 9:1229. doi:10.3390/nano9091229
  • Urish KL, Bullock AG, Kreger AM, Shah NB, Jeong K, Rothenberger SD, 2018. A multicenter study of irrigation and debridement in total knee arthroplasty Periprosthetic Joint Infection: Treatment Failure Is High . J Arthroplasty. 33:1154–1159. doi:10.1016/j.arth.2017.11.029
  • Valliammai A, Sethupathy S, Priya A, Selvaraj A, Bhaskar JP, Krishnan V, Pandian SK. 2019. 5-Dodecanolide interferes with biofilm formation and reduces the virulence of methicillin-resistant Staphylococcus aureus (MRSA) through up regulation of agr system. Sci Rep. 9:13744. doi:10.1038/s41598-019-50207-y
  • van Vugt TAG, Arts JJ, Geurts JAP. 2019. Antibiotic-loaded polymethylmethacrylate beads and spacers in treatment of orthopedic infections and the role of biofilm formation. Front Microbiol. 10:1626. doi:10.3389/fmicb.2019.01626
  • Vasilev K, Griesser SS, Griesser HJ. 2011. Antibacterial surfaces and coatings produced by plasma techniques. Plasma Processes Polym. 8:1010–1023. 10.1002/ppap.201100097 doi:10.1002/ppap.201100097
  • Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK. 2014. Bacterial adherence and biofilm formation on medical implants: a review. Proc Inst Mech Eng H. 228:1083–1099. doi:10.1177/0954411914556137
  • Verderosa AD, Totsika M, Fairfull-Smith KE. 2019. Bacterial biofilm eradication agents: a current review. Front Chem. 7:824. doi:10.3389/fchem.2019.00824
  • Wang L, Hu C, Shao L. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 12:1227–1249. doi:10.2147/IJN.S121956
  • Wang M, Bhardwaj G, Webster TJ. 2017. Antibacterial properties of PEKK for orthopedic applications. Int J Nanomedicine. 12:6471–6476. doi:10.2147/IJN.S134983
  • Webb JC, Spencer RF. 2007. The role of polymethylmethacrylate bone cement in modern orthopaedic surgery . J Bone Joint Surg Br. 89:851–857. doi:10.1302/0301-620X.89B7.19148
  • Wei G, Lo C, Walsh C, Hiller NL, Marculescu R. 2016. In silico evaluation of the impacts of quorum sensing inhibition (QSI) on strain competition and development of QSI resistance. Sci Rep. 6:35136. doi:10.1038/srep35136
  • Whiteley M, Diggle SP, Greenberg EP. 2017. Progress in and promise of bacterial quorum sensing research. Nature. 551:313–320. doi:10.1038/nature24624
  • Widmer AF. 2001. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis. 33: S94–S106. doi:10.1086/321863
  • Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, Fresta M, Nie G, Chen C, Shen H, et al. 2015. Safety of nanoparticles in medicine. Curr Drug Targets. 16:1671–1681. doi:10.2174/1389450115666140804124808
  • Wolska KI, Grudniak AM, Rudnicka Z, Markowska K. 2016. Genetic control of bacterial biofilms. J Appl Genet. 57:225–238. doi:10.1007/s13353-015-0309-2
  • Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y. 2018. A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front Microbiol. 9:3302 doi:10.3389/fmicb.2018.03302
  • Wu S, Zhang B, Liu Y, Suo X, Li H. 2018. Influence of surface topography on bacterial adhesion: a review (Review). Biointerphases. 13:060801. doi:10.1116/1.5054057
  • Wu Y, Wang R, Xu M, Liu Y, Zhu X, Qiu J, Liu Q, He P, Li Q. 2019. A novel polysaccharide depolymerase encoded by the phage SH-KP152226 confers specific activity against multidrug-resistant Klebsiella pneumoniae via biofilm degradation. Front Microbiol. 10:2768. doi:10.3389/fmicb.2019.02768
  • Xue C, Song X, Liu M, Ai F, Liu M, Shang Q, Shi X, Li F, He X, Xie L, et al. 2017. A highly efficient, low-toxic, wide-spectrum antibacterial coating designed for 3D printed implants with tailorable release properties. J Mater Chem B. 5:4128–4136. doi:10.1039/C7TB00478H
  • Yan J, Bassler BL. 2019. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe. 26:15–21. doi:10.1016/j.chom.2019.06.002
  • Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. 2004. Quorum sensing in Staphylococcus aureus biofilms. J Bacteriol. 186:1838–1850. doi:10.1128/jb.186.6.1838-1850.2004
  • Yazici H, O'Neill MB, Kacar T, Wilson BR, Oren EE, Sarikaya M, Tamerler C. 2016. Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants. ACS Appl Mater Interfaces. 8:5070–5081. doi:10.1021/acsami.5b03697
  • Yilmaz C, Colak M, Yilmaz BC, Ersoz G, Kutateladze M, Gozlugol M. 2013. Bacteriophage therapy in implant-related infections: an experimental study. J Bone Joint Surg Am. 95:117–125. doi:10.2106/JBJS.K.01135
  • Yin W, Wang Y, Liu L, He J. 2019. Biofilms: the microbial "Protective Clothing" in Extreme Environments. IJMS. 20:3423. doi:10.3390/ijms20143423
  • Yu K, Lo JCY, Yan M, Yang X, Brooks DE, Hancock REW, Lange D, Kizhakkedathu JN. 2017. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model. Biomaterials. 116:69–81. doi:10.1016/j.biomaterials.2016.11.047
  • Yu P, Wang Z, Marcos-Hernandez M, Zuo P, Zhang D, Powell C, Pan AY, Villagrán D, Wong MS, Alvarez PJJ, et al. 2019. Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study. Environ Sci: Nano. 6:3539–−3550. doi:10.1039/C9EN00827F
  • Zaat S, Broekhuizen C, Riool M. 2010. Host tissue as a niche for biomaterial-associated infection. Future Microbiol. 5:1149–1151. doi:10.2217/fmb.10.89
  • Zabielska R, Agnieszka T, Kunicka-Styczyńska A. 2016. Methods for eradication of the biofilms formed by opportunistic pathogens using novel techniques- a review. biologica. 12:26–37. doi:10.1515/fobio-2016-0003
  • Zaborowska M, Tillander J, Brånemark R, Hagberg L, Thomsen P, Trobos M. 2017. Biofilm formation and antimicrobial susceptibility of staphylococci and enterococci from osteomyelitis associated with percutaneous orthopaedic implants. J Biomed Mater Res B Appl Biomater. 105:2630–2640. doi:10.1002/jbm.b.33803
  • Zhang J. 2011. Silver-coated zinc oxide nano antibacterial synthesis and antibacterial activity characterization. In: 2011 International Conference on Electronics and Optoelectronics (ICEOE), Vol. 3, Dalian, Liaoning (IEEE, 2011), pp. V3-94–V3-98.
  • Zhang L, Sun L, Wei R, Gao Q, He T, Xu C, Liu X, Wang R. 2017. Intracellular Staphylococcus aureus control by virulent bacteriophages within MAC-T bovine mammary epithelial cells. Antimicrob Agents Chemother. 61:e01990–16. doi:10.1128/AAC.01990-16
  • Zhang W, Li Y, Niu J, Chen Y. 2013. Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir. 29:4647–4651. doi:10.1021/la400500t
  • Zhang Z, Shively JE. 2013. Acceleration of bone repair in NOD/SCID mice by human monoosteophils, novel LL-37-activated monocytes. PLoS One. 8:e67649 doi:10.1371/journal.pone.0067649
  • Zhao L, Chu PK, Zhang Y, Wu Z. 2009. Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater. 91:470–480. doi:10.1002/jbm.b.31463
  • Zhu C, Tan H, Cheng T, Shen H, Shao J, Guo Y, Shi S, Zhang X. 2013. Human β-defensin 3 inhibits antibiotic-resistant Staphylococcus biofilm formation. J Surg Res. 183:204–213. doi:10.1016/j.jss.2012.11.048
  • Zhukova LV. 2015. Evidence for compression of Escherichia coli K12 cells under the effect of TiO2 nanoparticles. ACS Appl Mater Interfaces. 7:27197–27205. doi:10.1021/acsami.5b08042
  • Zilberman M, Elsner JJ. 2008. Antibiotic-eluting medical devices for various applications. J Control Release. 130:202–215. doi:10.1016/j.jconrel.2008.05.020
  • Zimmerli W, Trampuz A, Ochsner PE. 2004. Prosthetic-joint infections. N Engl J Med. 351:1645–1654. doi:10.1056/NEJMra040181
  • Zywiel MG, Mont MA. 2011. Orthopedic implant approval: achieving the right balance. Expert Rev Med Devices. 8:405–408. doi:10.1586/erd.11.38

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.