Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 1
285
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Tough amphiphilic antifouling coating based on acrylamide, fluoromethacrylate and non-isocyanate urethane dimethacrylate crosslinker

ORCID Icon, , , &
Pages 36-48 | Received 15 Oct 2020, Accepted 21 Dec 2020, Published online: 24 Jan 2021

References

  • Abdurrahmanoglu S, Can V, Okay O. 2009. Design of high-toughness polyacrylamide hydrogels by hydrophobic modification. Polymer. 50:5449–5455. doi:10.1016/j.polymer.2009.09.042
  • Abdurrahmanoglu S, Cilingir M, Okay O. 2011. Dodecyl methacrylate as a crosslinker in the preparation of tough polyacrylamide hydrogels. Polymer (Guildf). 52:694–699. doi:10.1016/j.polymer.2010.12.044
  • Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW. 1983. Surface thermodynamics of bacterial adhesion. Appl Environ  Microbiol. 46(1):90–97. doi:10.1128/AEM.46.1.90-97.1983
  • Baier RE, Costlow JD, Tipper RC, editors. 1984. Initial events in microbial film formation in Marine biodeterioration: an interdisciplinary study. London: E & FN Spon Ltd.; p. 57–62.
  • Callow JA, Callow ME. 2011. Trends in development of environmental-friendly fouling-resistant coatings. Nat. Commun. 2:244. doi:10.1038/ncomms1251.
  • Casse F, Stafslien SJ, Bahr J, Daniels J, Finlay J, Callow J, Callow M. 2007. Combinatorial materials research applied to the development of new surface coatings V. Application of a spinning water-jet for the semi-high throughput assessment of the attachment strength of marine fouling algae . Biofouling. 23:121–130. doi:10.1080/08927010701189583
  • Chaudhury MK. 1996. Interfacial interaction between low-energy surfaces. Mater. Sci. Eng. R Reports. 16:97–159. doi:10.1016/0927-796X(95)00185-9
  • Clare AS, Stübing D, Price C, Reynolds KJ, Guerin AJ, Brinkmann A, Finnie AA. 2018. Drag-reducing riblets with fouling-release properties: development and testing. Biofouling. 7014:1–13. doi:10.1080/08927014.2018.1469747
  • Colwell RR. 1983. Biotechnology in the marine sciences. Science. 222:19–24. doi:10.1126/science.222.4619.19
  • Datta J, Włoch M. 2016. Progress in non-isocyanate polyurethanes synthesized from cyclic carbonate intermediates and di- or polyamines in the context of structure–properties relationship and from an environmental point of view. Polym Bull. 73:1459–1496. doi:10.1007/s00289-015-1546-6
  • Evans SM, Leksono T, Mckinnell PD. 1995. Tributyltin pollution – a diminishing problem following legislation limiting the use of Tbt-based anti-fouling paints. Mar Pollut Bull. 30:14–21. doi:10.1016/0025-326X(94)00181-8
  • Figovsky O, Shapovalov L, Buslov F. 2005. Ultraviolet and thermostable non-isocyanate polyurethane coatings. Surf Coat Int B: Coat Trans. 88:67–71. doi:10.1007/BF02699710
  • Figovsky O, Shapovalov L, Leykin A, Birukova O, Potashnikova R, Polymate Ltd. – International Nanotechnology Research Center, Migdal HaEmek, Israel. 2013. Advances in the field of nonisocyanate polyurethanes based on cyclic carbonates. ChChT. 7:79–87. doi:10.23939/chcht07.01.079
  • Finlay JA, Bennett SM, Brewer LH, Sokolova A, Clay G, Gunari N, Meyer AE, Walker GC, Wendt DE, Callow ME, et al. 2010. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability. Biofouling. 26:657–666. doi:10.1080/08927014.2010.506242
  • Fleischer M, Blattman H, Mülhaupt R. 2013. Glycerol-, pentaerythritol and trimethylolpropane-based polyurethanes and their cellulose carbonate composites prepared via the non-isocyanate route with catalytic carbon dioxide fixation. Green Chem. 15:934–942. doi:10.1039/c3gc00078h
  • Ista LK, Callow ME, Finlay JA, Coleman SE, Nolasco AC, Simons RH, Callow JA, Lopez GP. 2004. Effect of substratum surface chemistry and surface energy on attachment of marine bacteria and algal spores. Appl Environ Microbiol. 70:4151–4157. doi:10.1128/AEM.70.7.4151-4157.2004
  • Johnson KL, Kendall K, Roberts AD. 1971. Surface energy and the contact of elastic solids. Proc Royal Soc London Ser A. 324:301–313. doi:10.1098/rspa.1971.0141
  • Kathalewar MS, Joshi PB, Sabnis AS, Malshe V. 2013. Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv. 3:4110–4129. doi:10.1039/c2ra21938g
  • Kempf G. 1937. On the effect of roughness on the resistance of ships. Trans INA. 79:109–119.
  • King RN, Andrade JD, Ma SM, Gregonis DE, Brostrom LR. 1985. Interfacial tensions at acrylic hydrogel-water interfaces. J Colloid Interface Sci. 103:62–75. doi:10.1016/0021-9797(85)90077-3
  • Klein GL, Pierre G, Bellon-Fontaine M-N, Zhao J-M, Breret M, Maugard T, Graber M. 2014. Marine diatom Navicula jeffreyi from biochemical composition and physico-chemical surface properties to understanding the first step of benthic biofilm formation. J Adhes Sci Technol. 28:1739–1753. doi:10.1080/01694243.2014.920461
  • Koetting MC, Peters JT, Steichen SD, Peppas NA. 2016. Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep. 93:1–49. doi:10.1016/j.mser.2015.04.001
  • Lee A, Deng Y. 2015. Green polyurethane from lignin and soybean oil through non-isocyanate reactions. Eur Polym J. 63:67–73. doi:10.1016/j.eurpolymj.2014.11.023
  • Lejars M, Margaillan A, Bressy C. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev. 112:4347–4390. doi:10.1021/cr200350v
  • Lewin R. 1984. Microbial adhesion is a sticky problem. Science. 224:375–377. doi:10.1126/science.6143401
  • Loeb GI, Neihof RA. 1975. Marine conditioning film. In Advances chemical series. Washington D.C: American Chemical Society; 145:319–335.
  • Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN. 2001. The effect of cure rate on the mechanical properties of dental resins. Dent Mater. 17:504–511. doi:10.1016/s0109-5641(01)00010-0
  • Magin CM, Cooper SP, Brennan AB. 2010. Non-toxic antifouling strategies. Mater Today. 13:36–44. doi:10.1016/S1369-7021(10)70058-4
  • Maréchal J, Hellio C. 2009. Challenges for the development of new non-toxic antifouling solutions. Int J Mol Sci. 10:4623–4637. doi:10.3390/ijms10114623
  • Miller TM, Zhao L, Brennan AB. 1998. Rubber-elasticity of hybrid organic-inorganic composites evaluated using dynamic mechanical spectroscopy and equilibrium swelling. J Appl Polym Sci. 68:947–957. doi:10.1002/(SICI)1097-4628(19980509)68:6<947::AID-APP8>3.0.CO;2-H
  • Miquelard-Garnier G, Demoures S, Creton C, Hourdet D. 2006. Synthesis and rheological behavior of new hydrophobically modified hydrogels with tunable properties. Macromolecules. 39:8128–8139. doi:10.1021/ma061361n
  • Moghadam MN, Pioletti DP. 2015. Improving hydrogels' toughness by increasing the dissipative properties of their network. J Mech Behav Biomed Mater. 41:161–167. doi:10.1016/j.jmbbm.2014.10.010
  • Molino PJ, Wetherbee R. 2008. The biology of biofouling diatoms and their role in the development of microbial slimes. Biofouling. 24:365–379. doi:10.1080/08927010802254583
  • Murosaki T, Ahmed N, Gong JP. 2011. Antifouling properties of hydrogels. Sci Technol Adv Mater. 12:064706. doi:10.1088/1468-6996/12/6/064706
  • Nakashima K, Takeshita T, Morimoto K. 2002. Review of the occupational exposure to isocyanates: mechanisms of action. Environ Health Prev Med. 7:1–6. doi:10.1007/BF02898058
  • Newby BZ, Chaudhury MK, Brown HR. 1995. Macroscopic evidence of the effect of interfacial slippage on adhesion. Science. 269:1407–1409. doi:10.1126/science.269.5229.1407
  • Patent No. PCT/EP20 10/070509 2011. Hempel A/S Novel fouling control compositions; 22 December Issue 12.
  • Pradhan S, Kumar S, Mohanty S, Nayak SK. 2019. Environmentally benign fouling-resistant marine coatings: a review. Polymer–Plast Technol Eng. 58:1–21. doi:10.1080/03602559.2018.1482922
  • Salta M, Wharton JA, Stoodley P, Dennington SP, Goodes LR, Werwinski S, Mart U, Wood RJK, Stokes KR. 2013. Marine biofilms on artificial surfaces: structure and dynamics. Philos Trans R. Soc, A. 15:2879–2893. doi:10.1111/1462-2920.12186
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi:10.1080/08927010701461974
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi:10.1080/08927014.2010.542809
  • Shibayama M, Tanaka T. 1993. Volume phase transition and related phenomena of polymer gels. In: Dušek K, editors. Responsive gels: volume Transitions I. Advances in polymer science, vol. 109. Berlin: Springer; p. 1–62.
  • Sokolova A, Cilz N, Daniels J, Stafslien SJ, Brewer LH, Wendt DE, Bright FV, Detty MR. 2012. A comparison of the antifouling/foul-release characteristics of non-biocidal xerogel and commercial coatings toward micro- and macrofouling organisms. Biofouling. 28:511–523. doi:10.1080/08927014.2012.690197
  • Stafslien SJ, Bahr J, Daniels J, Christianson DA, Chisholm BJ. 2011. High-throughput screening of fouling-release properties: an overview. J Adhes Sci Technol. 25:2239–2253. doi:10.1163/016942411X574934
  • Stafslien SJ, Bahr JA, Daniels JW, Vander Wal L, Nevins J, Smith J, Schiele K, Chisholm B. 2007. Combinatorial materials research applied to the development of new surface coatings VI: an automated spinning water jet apparatus for the high-throughput characterization of fouling-release marine coatings. Rev Sci Instrum. 78:072204 doi:10.1063/1.2755965
  • Svenson TE, Medhurst JS. 1984. A simplified method for the assessment of propeller roughness penalties. Mar Technol. 21:41–48.
  • Thomas K. 2009. The use of broad-spectrum organic biocides in marine antifouling paint. In Advances in marine antifouling coatings and technologies. Cambridge (UK): Elsevier Ltd; p. 522–553.
  • Thomas KV, Brooks S. 2010. The environmental fate and effects of antifouling paint biocides. Biofouling. 26:73–88. doi:10.1080/08927010903216564
  • Townsin RL, Spencer DS, Mosaad M, Patience G. 1985. Rough propeller penalties. Trans SNAME. 93:165–187.
  • Tuncaboylu DC, Sari M, Oppermann W, Okay O. 2011. Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules. 44:4997–5005. doi:10.1021/ma200579v
  • Unverferth M, Kreye O, Prohammer A, Meier MAR. 2013. Renewable non-isocyanate based thermoplastic polyurethanes via polycondensation of dimethyl carbamate monomers with diols. Macromol Rapid Commun. 34:1569–1574. doi:10.1002/marc.201300503
  • Valentin JDP, Qin XH, Fessele C, Straub H, van der Mei HC, Buhmann MT, Maniura-Weber K, Ren Q. 2019. Substrate viscosity plays an important role in bacterial adhesion under fluid flow. J Colloid Interface Sci. 552:247–257. doi:10.1016/j.jcis.2019.05.043
  • Wang Y, Qiu F, Xu B, Xu J, Jiang Y, Yang D, Li P. 2013. Preparation, mechanical properties, and surface morphologies of waterborne fluorinated polyurethane-acrylate. Prog. Org. Coatings. 76:876–883. doi:10.1016/j.porgcoat.2013.02.003
  • Wilkes GL. 1978. Polymer Science and Technology: An interdisciplinary approach; Part II Physical aspects of polymers. American Chemical Society, Washington, DC, p. 129.
  • Wu G, C-Li C, Jiang X-H, Yu L-M. 2016. Highly efficient antifouling property based on self-generating hydrogel layer of polyacrylamide coatings. J Appl Polym Sci. 133:44111. doi:10.1002/app.44111
  • Xu D, Su Y, Zhao L, Meng F, Liu C, Guan Y, Zhang J, Luo J. 2017. Antibacterial and antifouling properties of a polyurethane surface modified with perfluoroalkyl and silver nanoparticles. J Biomed Mater Res A. 105:531–538. doi:10.1002/jbm.a.35929

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.