Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 3
562
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Natural polyketide 6-pentyl-2H-pyrone-2-one and its synthetic analogues efficiently prevent marine biofouling

, , , , , , & ORCID Icon show all
Pages 257-266 | Received 25 May 2020, Accepted 01 Feb 2021, Published online: 18 Apr 2021

References

  • Aizieu C. 1986. TBT detrimental effects on oyster culture in France - evolution since antifouling paint regulation. In: OCEANS'86. Washington, DC: IEEE; p. 1130–1134.
  • Aldred N, Clare AS. 2008. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling. 24:351–363. doi:10.1080/08927010802256117
  • Aldred N, Clare AS. 2014. Mini-review: impact and dynamics of surface fouling by solitary and compound ascidians. Biofouling. 30:259–270. doi:10.1080/08927014.2013.866653
  • Almeida JR, Vasconcelos V. 2015. Natural antifouling compounds: effectiveness in preventing invertebrate settlement and adhesion. Biotechnol Adv. 33:343–357. doi:10.1016/j.biotechadv.2015.01.013
  • Alzieu C, Sanjuan J, Deltreil J, Borel M. 1986. Tin contamination in Arcachon Bay: effects on oyster shell anomalies. Mar Pollut Bull. 17:494–498. doi:10.1016/0025-326X(86)90636-3
  • Amara I, Miled W, Slama RB, Ladhari N. 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Pharmacol. 57:115–130. doi:10.1016/j.etap.2017.12.001
  • Antizar-Ladislao B. 2008. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. A review. [email protected]. Environ Int. 34:292–308. doi:10.1016/j.envint.2007.09.005
  • Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 6:71–79. doi:10.1016/j.jpha.2015.11.005
  • Blanchard J, Grosell M. 2005. Effects of salinity on copper accumulation in the common killifish (Fundulus heteroclitus). Environ Toxicol Chem. 24:1403–1413. doi:10.1897/04-373r.1
  • Blihoghe D, Manzo E, Villela A, Cutignano A, Picariello G, Faimali M, Fontana A. 2011. Evaluation of the antifouling properties of 3-alyklpyridine compounds. Biofouling. 27:99–109. doi:10.1080/08927014.2010.542587
  • Brachmann AO, Brameyer S, Kresovic D, Hitkova I, Kopp Y, Manske C, Schubert K, Bode HB, Heermann R. 2013. Pyrones as bacterial signaling molecules. Nat Chem Biol. 9:573–578. doi:10.1038/nchembio.1295
  • Callow JA, Callow ME. 2006. Biofilms. In: Fusetani N, Clare AS, editors. Antifouling compounds. Marine molecular biotechnology, progress in molecular and subcellular biology. Berlin: Springer; p. 141–169.
  • Callow ME, Callow JA. 2000. Substratum location and zoospore behaviour in the fouling alga Enteromorpha. Biofouling. 15:49–56. doi:10.1080/08927010009386297
  • Chen D, Yu S, Ofwegen LV, Proksch P, Lin W. 2012. Anthogorgienes A-O, new guaiazulene-derived terpenoids from a Chinese gorgonian Anthogorgia species, and their antifouling and antibiotic activities . J Agric Food Chem. 60:112–123. doi:10.1021/jf2040862
  • Clare AS. 1996. Marine natural product antifoulants: status and potential. Biofouling. 9:211–229. doi:10.1080/08927019609378304
  • Clare AS, Matsumura K. 2000. Nature and perception of barnacle settlement pheromones. Biofouling. 15:57–71. doi:10.1080/08927010009386298
  • Clare AS, Rittschof D, Gerhart DJ, Maki JS. 1992. Molecular approaches to nontoxic antifouling. Invetebr Reprod Dev. 22:67–76. doi:10.1080/07924259.1992.9672258
  • Cooney JM, Lauren DR, Jensen DJ, Perry-Meyer LJ. 1997. Effect of harvest time, temperature, light, and spore inoculum concentration on 6-n-pentyl-2H-pyran-2-one production by Trichoderma spp. J Agric Food Chem. 45:2802–2806. doi:10.1021/jf970086o
  • Cui LY, Wang X, He Y, Fan XS. 2014. Environmentally sustainable and chemo‐selectively favorable synthesis of substituted 2H‐pyran‐2‐ones in water under MWI. Jnl Chinese Chemical Soc. 61:233–239. doi:10.1002/jccs.201300013
  • Dobler D, Reiser O. 2016. Synthesis of 6-substituted 2-pyrones starting from renewable resources: total synthesis of sibirinone, (E)-6-(pent-1-en-1-yl)-2H-pyran-2-one, and (E)-6-(hept-1-en-1-yl)-2H-pyran-2-one. J Org Chem. 81:10357–10365. doi:10.1021/acs.joc.6b01339
  • Dobretsov S, Rittschof D. 2020. Love at first taste: induction of larval settlement by marine microbes. IJMS. 21:731. doi:10.3390/ijms21030731
  • Erable B, Vandecandelaere I, Faimali M, Delia ML, Etcheverry L, Vandamme P, Bergel A. 2010. Marine aerobic biofilm as biocathode catalyst. Bioelectrochemistry. 78:51–56. doi:10.1016/j.bioelechem.2009.06.006
  • Freckelton ML, Nedved BT, Hadfield MG. 2017. Induction of invertebrate larval settlement; different bacteria, different mechanisms? Sci Rep. 7:42557. doi:10.1038/srep42557
  • Gibbs P, Bryan GW. 1986. Reproductive failure in populations of the dog-whelk, Nucella lapillus, caused by imposex induced by tributyltin from antifouling paints. J Mar Biol Ass. 66:767–777. doi:10.1017/S0025315400048414
  • Guardiola FA, Cuesta A, Meseguer J, Esteban MA. 2012. Risks of using antifouling biocides in aquaculture. Int J Mol Sci. 13:1541–1560. doi:10.3390/ijms13021541
  • Gupta SP. 2001. Quantitative structure-activity relationships of antianginal drugs. In: Jucker E, editor. Progress in drug research. Basel: Springer; p. 121–154.
  • Hoch M. 2001. Organotin compounds in the environment—an overview. Appl Geochem. 16:719–743. doi:10.1016/S0883-2927(00)00067-6
  • Hu J, Zhen H, Wan Y, Gao J, An W, An L, Jin F, Jin X. 2006. Trophic magnification of triphenyltin in a marine food web of Bohai Bay, North China: comparison to tributyltin. Environ Sci Technol. 40:3142–3147. doi:10.1021/es0514747
  • Katranitsas A, Castritsi-Catharios J, Persoone G. 2003. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism. Mar Pollut Bull. 46:1491–1494. doi:10.1016/S0025-326X(03)00253-4
  • Kwon KK, Lee HS, Jung SY, Yim JH, Lee JH, Lee HK. 2002. Isolation and identification of biofilm-forming marine bacteria on glass surfaces in Dae-Ho Dike, Korea. J Microbiol Korea. 40:260–266.
  • Lau SC, Qian PY. 2000. Inhibitory effect of phenolic compounds and marine bacteria on larval settlement of the barnacle Balanus amphitrite amphitrite Darwin. Biofouling. 16:47–58. doi:10.1080/08927010009378429
  • Lau SC, Tsoi MM, Li X, Plakhotnikova I, Wu M, Wong PK, Qian PY. 2004. Loktanella hongkongensis sp. nov., a novel member of the alpha-Proteobacteria originating from marine biofilms in Hong Kong waters. Int J Syst Evol Microbiol. 54:2281–2284. doi:10.1099/ijs.0.63294-0
  • Liang J, Zhang Z, Liu Y, Wang M, Zhang XH. 2015. Loktanella sediminum sp. nov., isolated from marine surface sediment. Int J Syst Evol Microbiol. 65:686–691. doi:10.1099/ijs.0.070680-0
  • Liaw CC, Chen PC, Shih CJ, Tseng SP, Lai YM, Hsu CH, Dorrestein PC, Yang YL. 2015. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach. Sci Rep. 5:12856. doi:10.1038/srep12856
  • Lin CK, Wang YT, Hung EM, Yang YL, Lee JC, Sheu JH, Liaw CC. 2017. Butyrolactones and diketopiperazines from marine microbes: inhibition effects on dengue virus type 2 replication. Planta Med. 83:158–163. doi:10.1055/s-0042-112998
  • Luo T, Dai M, Zheng SL, Schreiber SL. 2011. Syntheses of α-pyrones using gold-catalyzed coupling reactions. Org Lett. 13:2834–2836. doi:10.1021/ol200794w
  • McNeil EM. 2018. Antifouling: regulation of biocides in the UK before and after Brexit. Mar Policy. 92:58–60. doi:10.1016/j.marpol.2018.02.015
  • Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B. 2011. Effect of endocrine disruptor pesticides: a review. Int J Environ Res Public Health. 8:2265–2303. doi:10.3390/ijerph8062265
  • Neira C, Mendoza G, Levin LA, Zirino A, Delgadillo-Hinojosa F, Porrachia M, Deheyn DD. 2011. Macrobenthic community response to copper in Shelter Island Yacht Basin, San Diego Bay, California. Mar Pollut Bull. 62:701–717. doi:10.1016/j.marpolbul.2011.01.027
  • O’Toole GA. 2011. Microtiter dish biofilm formation assay. J Vis Exp. 47:e2437. doi:10.3791/2437
  • Protopapa M, Kotsiri M, Mouratidis S, Roussis V, Ioannou E, Dedos SG. 2019. Evaluation of antifouling potential and ecotoxicity of secondary metabolites derived from red algae of the genus Laurencia. Mar Drugs. 17:646. doi:10.3390/md17110646
  • Pulido MR, García-Quintanilla M, Martín-Peña R, Cisneros JM, McConnell MJ. 2013. Progress on the development of rapid methods for antimicrobial susceptibility testing. J Antimicrob Chemother. 68:2710–2717. doi:10.1093/jac/dkt253
  • Qi SH, Ma X. 2017. Antifouling compounds from marine invertebrates. Mar Drugs. 15:263. doi:10.3390/md15090263.
  • Qian PY, Lau SC, Dahms HU, Dobretsov S, Harder T. 2007. Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture. Mar Biotechnol (NY). 9:399–410. doi:10.1007/s10126-007-9001-9
  • Qian PY, Xu Y, Fusetani N. 2010. Natural products as antifouling compounds: recent progress and future perspectives. Biofouling. 26:223–234. doi:10.1080/08927010903470815
  • Rajitha K, Nancharaiah YV, Venugopalan VP. 2020a. Insight into bacterial biofilm-barnacle larvae interactions for environmentally benign antifouling strategies. Int Biodeter Biodegr. 149:104937. doi:10.1016/j.ibiod.2020.104937
  • Rajitha K, Nancharaiah YV, Venugopalan VP. 2020b. Role of bacterial biofilms and their EPS on settlement of barnacle (Amphibalanus reticulatus) larvae. Int Biodeter Biodegr. 150:104958. doi:10.1016/j.ibiod.2020.104958
  • Reddy GKK, Rajitha K, Nancharaiah YV. 2020. Antibiofouling potential of 1-alkyl-3-methylimidazolium ionic liquids: studies against biofouling barnacle larvae. J Mol Liq. 302:112497. doi:10.1016/j.molliq.2020.112497
  • Rittschof D. 2001. Natural product antifoulants and coatings development. In: McClintock J, Baker B, editors. Marine chemical ecology. 1st ed. Boca Raton: CRC Press; p. 543.
  • Rittschof D, Branscomb ES, Costlow JD. 1984. Settlement and behavior in relation to flow and surface in larval barnacles, Balanus amphitrite Darwin. J Exp Mar Biol Ecol. 82:131–146. doi:10.1016/0022-0981(84)90099-6
  • Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF. 2013. Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol. 15:2879–2893. doi:10.1111/1462-2920.12186
  • Schiff K, Brown J, Diehl D, Greenstein D. 2007. Extent and magnitude of copper contamination in marinas of the San Diego region, California, USA. Mar Pollut Bull. 54:322–328. doi:10.1016/j.marpolbul.2006.10.013
  • Sham RCT, Ho KKY, Zhou GJ, Li Y, Wang X, Leung KMY. 2020. Occurrence, ecological and human health risks of phenyltin compounds in the marine environment of Hong Kong. Mar Pollut Bull. 154:111093. doi:10.1016/j.marpolbul.2020.111093
  • Shi H, Yu S, Liu D, Ofwegen LV, Proksch P, Lin W. 2012. Sinularones A-I, new cyclopentenone and butenolide derivatives from a marine soft coral Sinularia sp. and their antifouling activity. Mar Drugs. 10:1331–1344. doi:10.3390/md10061331
  • Siddiqui AQ, Ballatore C, McGuigan C, De Clercq E, Balzarini J. 1999. The presence of substituents on the aryl moiety of the aryl phosphoramidate derivative of d4T enhances anti-HIV efficacy in cell culture: a structure-activity relationship. J Med Chem. 42:393–399. doi:10.1021/jm9803931
  • Soares A, Guieysse B, Jefferson B, Cartmell E, Lester JN. 2008. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environ Int. 34:1033–1049. doi:10.1016/j.envint.2008.01.004
  • State of Washington Legislation. 2011. Recreational water vessels—antifouling paints. Revised Code of Washington (RCW), Title 70A, Chapter 70A.445.
  • Stafslien S, Daniels J, Chisholm B, Christianson D. 2007. Combinatorial materials research applied to the development of new surface coatings III. Utilisation of a high-throughput multiwell plate screening method to rapidly assess bacterial biofilm retention on antifouling surfaces. Biofouling. 23:37–44. doi:10.1080/08927010601127311
  • Sun CL, Fürstner A. 2013. Formal ring-opening/cross-coupling reactions of 2-pyrones: iron-catalyzed entry into stereodefined dienyl carboxylates. Angew Chem Int Ed Engl. 52:13071–13075. doi:10.1002/anie.201307028
  • Swain G. 1999. Redefining antifouling coatings. J Prot Coat Linings. 16:26–35.
  • Thibonnet J, Abarbri M, Parrain JL, Duchêne A. 2002. One-step synthesis of alpha-pyrones from acyl chlorides by the Stille reaction. J Org Chem. 67:3941–3944. doi:10.1021/jo025518v
  • Vandecandelaere I, Nercessian O, Segaert E, Achouak W, Mollica A, Faimali M, De Vos P, Vandamme P. 2008. Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol. 58:2589–2596. doi:10.1099/ijs.0.65691-0
  • Viarengo A, Pertica M, Mancinelli G, Burlando B, Canesi L, Orunesu M. 1996. In vivo effects of copper on the calcium homeostasis mechanisms of mussel gill cell plasma membranes. Comp Biochem Physiol Part C. 113:421–425. doi:10.1016/0742-8413(96)00004-7
  • Vinale F, Sivasithamparam K, Ghisalberti E, Marra R, Barbetti M, Li H, Woo S, Lorito MJP. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Lett Appl Microbiol. 72:80–86. doi:10.1111/j.1472-765X.2006.01939.x
  • Xu Y, He H, Schulz S, Liu X, Fusetani N, Xiong H, Xiao X, Qian PY. 2010. Potent antifouling compounds produced by marine Streptomyces. Bioresour Technol. 101:1331–1336. doi:10.1016/j.biortech.2009.09.046
  • Xu Y. 2009. Antifouling compounds from deep-sea bacteria and their potential mode of action [dissertation]. Kowloon (HK): Hong Kong University of Science and Technology.
  • Zhang J, Liang Y, Liao XJ, Deng Z, Xu SH. 2014. Isolation of a new butenolide from the South China sea gorgonian coral Subergorgia suberosa. Nat Prod Res. 28:150–155. doi:10.1080/14786419.2013.857668
  • Zhang YF, Zhang H, He L, Liu C, Xu Y, Qian PY. 2012. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms. ACS Chem Biol. 7:1049–1058. doi:10.1021/cb200545s

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.