Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 37, 2021 - Issue 5
183
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Dynamics and metabolic profile of oral keratinocytes (NOK-si) and Candida albicans after interaction in co-culture

, & ORCID Icon
Pages 572-589 | Received 26 Jan 2021, Accepted 07 Jun 2021, Published online: 01 Jul 2021

References

  • Abaci O. 2011. Investigation of extracellular phospholipase and proteinase activities of Candida species isolated from individuals denture wearers and genotypic distribution of Candida albicans strains. Curr Microbiol. 62:1308–1314. doi:10.1007/s00284-010-9858-0
  • Biswas S, Van Dijck P, Datta A. 2007. Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol Mol Biol Rev. 71:348–376. doi:10.1128/MMBR.00009-06
  • Brooks GA. 2018. The science and translation of lactate shuttle theory. Cell Metab. 27:757–785. doi:10.1016/j.cmet.2018.03.008
  • Casaroto AR, da Silva RA, Salmeron S, Rezende MLR, Dionísio TJ, Santos CFD, Pinke KH, Klingbeil MFG, Salomão PA, Lopes MMR, et al. 2019. Candida albicans-cell interactions activate innate immune defense in human palate epithelial primary cells via nitric oxide (NO) and β-defensin 2 (hBD-2). Cells. 8:707. doi:10.3390/cells8070707
  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 183:5385–5394. doi:10.1128/JB.183.18.5385-5394.2001
  • Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, Ghannoum MA. 2001. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 80:903–908. doi:10.1177/00220345010800031101
  • Chauhan NM, Raut JS, Karuppayil SM. 2011. A morphogenetic regulatory role for ethyl alcohol in Candida albicans. Mycoses. 54:e697–e703. doi:10.1111/j.1439-0507.2010.02002.x
  • Chen H, Fink GR. 2006. Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev. 20:1150–1161. doi:10.1101/gad.1411806
  • Cheng YF, Jin W, Mao SY, Zhu WY. 2013. Production of citrate by anaerobic fungi in the presence of co-culture methanogens as revealed by (1)H NMR spectrometry. Asian-Australas J Anim Sci. 26:1416–1423. doi:10.5713/ajas.2013.13134
  • Costa CR, Passos XS, e Souza LK, Lucena PdA, Fernandes OdF, Silva MdR. 2010. Differences in exoenzyme production and adherence ability of Candida spp. isolates from catheter, blood and oral cavity. Rev Inst Med Trop Sao Paulo. 52:139–143. doi:10.1590/S0036-46652010000300005
  • de Carvalho Dias K, Barbugli PA, de Patto F, Lordello VB, de Aquino Penteado L, Medeiros AI, Vergani CE. 2017. Soluble factors from biofilm of Candida albicans and Staphylococcus aureus promote cell death and inflammatory response. BMC Microbiol. 17:146. doi:10.1186/s12866-017-1031-5
  • De Luca C, Guglielminetti M, Ferrario A, Calabr M, Casari E. 2012. Candidemia: species involved, virulence factors and antimycotic susceptibility. New Microbiol. 35:459–468.
  • Demain AL, Fang A. 2000. The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol. 69:1–39. doi:10.1007/3-540-44964-7_1
  • Dinarello CA. 2000. Proinflammatory cytokines. Chest. 118:503–508. doi:10.1378/chest.118.2.503
  • Dumitru R, Hornby JM, Nickerson KW. 2004. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother. 48:2350–2354. doi:10.1128/AAC.48.7.2350-2354.2004
  • Ernst JF. 2000. Transcription factors in Candida albicans - environmental control of morphogenesis. Microbiology (Reading). 146:1763–1774. doi:10.1099/00221287-146-8-1763
  • Farah CS, Gotjamanos T, Seymour GJ, Ashman RB. 2002. Cytokines in the oral mucosa of mice infected with Candida albicans. Oral Microbiol Immunol. 17:375–378. doi:10.1034/j.1399-302x.2002.170607.x
  • Ghannoum MA. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 13:122–143. doi:10.1128/CMR.13.1.122
  • Ghosh S, Kebaara BW, Atkin AL, Nickerson KW. 2008. Regulation of aromatic alcohol production in Candida albicans. Appl Environ Microbiol. 74:7211–7218. doi:10.1128/AEM.01614-08
  • Gray LR, Tompkins SC, Taylor EB. 2014. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 71:2577–2604. doi:10.1007/s00018-013-1539-2
  • Gulati M, Nobile CJ. 2016. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 18:310–321. doi:10.1016/j.micinf.2016.01.002
  • Hall RA, De Sordi L, Maccallum DM, Topal H, Eaton R, Bloor JW, Robinson GK, Levin LR, Buck J, Wang Y, et al. 2010. CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog. 186:e1001193. doi:10.1371/journal.ppat.1001193
  • Haynes L, Maue AC. 2009. Effects of aging on T cell function. Curr Opin Immunol. 21:414–417. doi:10.1016/j.coi.2009.05.009
  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 67:2982–2992. doi:10.1128/AEM.67.7.2982-2992.2001
  • Inglis DO, Sherlock G. 2013. Ras signaling gets fine-tuned: regulation of multiple pathogenic traits of Candida albicans. Eukaryot Cell. 12:1316–1325. doi:10.1128/EC.00094-13
  • Jackson S, Coulthwaite L, Loewy Z, Scallan A, Verran J. 2014. Biofilm development by blastospores and hyphae of Candida albicans on abraded denture acrylic resin surfaces. J Prosthet Dent. 112:988–993. doi:10.1016/j.prosdent.2014.02.003
  • Jakab Á, Antal K, Emri T, Boczonádi I, Imre A, Gebri E, Majoros L, Pfliegler WP, Szarka M, Balla G, et al. 2016. Effects of hemin, CO2, and pH on the branching of Candida albicans filamentous forms. Acta Microbiol Immunol Hung. 63:387–403. doi:10.1556/030.63.2016.023
  • Janeway CA. Jr. 2001. How the immune system protects the host from infection. Microbes Infect. 3:1167–1171. doi:10.1016/s1286-4579(01)01477-0
  • Jiao Y, Navid A, Stewart BJ, Mckinlay JB, Thelen MP, Pett-Ridge J. 2012. Syntrophic metabolism of a co-culture containing Clostridium cellulolyticum and Rhodopseudomonas palustris for hydrogen production. Int. J. Hydrog. Energia. 37:11719–11726. doi:10.1016/j.ijhydene.2012.05.100
  • Khater ES, Alnory MH. 2014. Exoenzymes activity and biofilm production in Candida species isolated from various clinical specimens in Benha University Hospital, Egypt. MRJI. 4:654–667.
  • Kidd MT, Kerr BJ. 1996. L-Threonine for poultry: a review. JAPR. 5:358–367. doi:10.1093/japr/5.4.358
  • Klengel T, Liang W-J, Chaloupka J, Ruoff C, Schröppel K, Naglik JR, Eckert SE, Mogensen EG, Haynes K, Tuite MF, et al. 2005. Fungal adenylyl cyclase integrates CO2 sensing with cAMP signaling and virulence. Curr Biol. 15:2021–2026. doi:10.1016/j.cub.2005.10.040
  • Kohlhaw GB. 2003. Leucine biosynthesis in fungi: entering metabolism through the back door. Microbiol Mol Biol Rev. 67:1–15. doi:10.1128/MMBR.67.1.1-15.2003
  • Lyon JP, de Resende MA. 2006. Correlation between adhesion, enzyme production, and susceptibility to fluconazole in Candida albicans obtained from denture wearers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 102:632–638. doi:10.1016/j.tripleo.2005.12.015
  • Ma N, Ellet J, Okediadi C, Hermes P, McCormick E, Casnocha S. 2009. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: improved productivity and lactate metabolism. Biotechnol Prog. 25:1353–1363. doi:10.1002/btpr.238
  • Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R. 2007. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell. 6:2429–2436. doi:10.1128/EC.00252-07
  • Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence. 4:119–128. doi:10.4161/viru.22913
  • Mock RC, Pollack JH, Hashimoto T. 1990. Carbon dioxide induces endotrophic germ tube formation in Candida albicans. Can J Microbiol. 36:249–253. doi:10.1139/m90-043
  • Mostefaoui Y, Bart C, Frenette M, Rouabhia M. 2004. Candida albicans and Streptococcus salivarius modulate IL-6, IL-8, and TNF-alpha expression and secretion by engineered human oral mucosa cells. Cell Microbiol. 6:1085–1096. doi:10.1111/j.1462-5822.2004.00420.x
  • Naglik JR, Moyes DL, Wächtler B, Hube B. 2011. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 13:963–976. doi:10.1016/j.micinf.2011.06.009
  • Naglik JR, Newport G, White TC, Fernandes-Naglik LL, Greenspan JS, Greenspan D, Sweet SP, Challacombe SJ, Agabian N. 1999. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun. 67:2482–2490. doi:10.1128/IAI.67.5.2482-2490.1999
  • Nakada D, Saunders TL, Morrison SJ. 2010. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature. 468:653–658. doi:10.1038/nature09571
  • Nash EE, Peters BM, Palmer GE, Fidel PL, Noverr MC. 2014. Morphogenesis is not required for Candida albicans-Staphylococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis. Infect Immun. 82:3426–3435. doi:10.1128/IAI.01746-14
  • Navale AM, Paranjape AN. 2016. Glucose transporters: physiological and pathological roles. Biophys Rev. 8:5–9. doi:10.1007/s12551-015-0186-2
  • Pellissari CV, Pavarina AC, Bagnato VS, Mima EG, Vergani CE, Jorge JH. 2016. Cytotoxicity of antimicrobial photodynamic inactivation on epithelial cells when co-cultured with Candida albicans. Photochem Photobiol Sci. 15:682–690. doi:10.1039/c5pp00387c
  • Pellon A, Sadeghi Nasab SD, Moyes DL. 2020. New insights in Candida albicans innate immunity at the mucosa: toxins, epithelium, metabolism, and beyond. Front Cell Infect Microbiol. 10: 81. doi:10.3389/fcimb.2020.00081
  • Perl T, Jünger M, Vautz W, Nolte J, Kuhns M, Borg-von Zepelin M, Quintel M. 2011. Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry-metabolic profiling by volatile organic compounds. Mycoses. 54:e828–e837. doi:10.1111/j.1439-0507.2011.02037.x
  • Polak A. 1992. Virulence of Candida albicans mutants. Mycoses. 35:9–16. doi:10.1111/j.1439-0507.1992.tb00813.x
  • Price MF, Wilkinson ID, Gentry LO. 1982. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 20:7–14. doi:10.1080/00362178285380031
  • Ramage G, Saville SP, Wickes BL, López-Ribot JL. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 68:5459–5463. doi:10.1128/AEM.68.11.5459-5463.2002
  • Rast TJ, Kullas AL, Southern PJ, Davis DA. 2016. Human epithelial cells discriminate between commensal and pathogenic interactions with Candida albicans. PLoS One. 1811:e0153165. doi:10.1371/journal.pone.0153165
  • Salerno C, Pascale M, Contaldo M, Esposito V, Busciolano M, Milillo L, Guida A, Petruzzi M, Serpico R. 2011. Candida-associated denture stomatitis. Med Oral Patol Oral Cir Bucal. 16:e139–e143. doi:10.4317/medoral.16.e139
  • Sanitá PV, Pavarina AC, Giampaolo ET, Silva MM, Mima EG, Ribeiro DG, Vergani CE. 2011. Candida spp. prevalence in well controlled type 2 diabetic patients with denture stomatitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 111:726–733. doi:10.1016/j.tripleo.2011.02.033
  • Sanitá PV, Machado AL, Pavarina AC, Massucato EM, Colombo AL, Vergani CE. 2012. Microwave denture disinfection versus nystatin in treating patients with well-controlled type 2 diabetes and denture stomatitis: a randomized clinical trial. Int J Prosthodont. 25:232–244.
  • Sanitá PV, Zago CE, Pavarina AC, Jorge JH, Machado AL, Vergani CE. 2014. Enzymatic activity profile of a Brazilian culture collection of Candida albicans isolated from diabetics and non-diabetics with oral candidiasis. Mycoses. 57:351–357. doi:10.1111/myc.12162
  • Sellick CA, Hansen R, Maqsood AR, Dunn WB, Stephens GM, Goodacre R, Dickson AJ. 2009. Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Anal Chem. 81:174–183. doi:10.1021/ac8016899
  • Sellick CA, Knight D, Croxford AS, Maqsood AR, Stephens GM, Goodacre R, Dickson AJ. 2010. Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: matching extraction approaches to cell type and metabolite targets. Metabolomics. 6:427–438. doi:10.1007/s11306-010-0216-9
  • Sellick CA, Hansen R, Stephens GM, Goodacre R, Dickson AJ. 2011. Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat Protoc. 6:1241–1249. doi:10.1038/nprot.2011.366
  • Sellick CA, Croxford AS, Maqsood AR, Stephens GM, Westerhoff HV, Goodacre R, Dickson AJ. 2015. Metabolite profiling of CHO cells: molecular reflections of bioprocessing effectiveness. Biotechnol J. 10:1434–1445. doi:10.1002/biot.201400664
  • Silva S, Henriques M, Oliveira R, Williams D, Azeredo J. 2010. In vitro biofilm activity of non-Candida albicans Candida species. Curr Microbiol. 61:534–540. doi:10.1007/s00284-010-9649-7
  • Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, et al. 2016. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature. 536:479–483. doi:10.1038/nature19084
  • Tonnetti L, Spaccapelo R, Cenci E, Mencacci A, Puccetti P, Coffman RL, Bistoni F, Romani L. 1995. Interleukin-4 and -10 exacerbate candidiasis in mice. Eur J Immunol. 25:1559–1565. doi:10.1002/eji.1830250614
  • Villa S, Hamideh M, Weinstock A, Qasim MN, Hazbun TR, Sellam A, Hernday AD, Thangamani S. 2020. Transcriptional control of hyphal morphogenesis in Candida albicans. FEMS Yeast Res. 20:foaa005.
  • Wagener J, Weindl G, de Groot PWJ, de Boer AD, Kaesler S, Thavaraj S, Bader O, Mailänder-Sanchez D, Borelli C, Weig M, et al. 2012. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PLoS One. 7:e50518. doi:10.1371/journal.pone.0050518
  • Williams RB, Lorenz MC. 2020. Multiple alternative carbon pathways combine to promote Candida albicans stress resistance, immune interactions, and virulence. mBio. 11:e03070-19. doi:10.1128/mBio.03070-19
  • Wollina U, Künkel W, Bulling L, Fünfstück C, Knöll B, Vennewald I, Hipler UC. 2004. Candida albicans-induced inflammatory response in human keratinocytes. Mycoses. 47:193–199. doi:10.1111/j.1439-0507.2004.00976.x
  • Yang M, Vousden KH. 2016. Serine and one-carbon metabolism in cancer. Nat Rev Cancer. 16:650–662. doi:10.1038/nrc.2016.81
  • Zago CE, Silva S, Sanitá PV, Barbugli PA, Dias CM, Lordello VB, Vergani CE. 2015. Dynamics of biofilm formation and the interaction between Candida albicans and methicillin-susceptible (MSSA) and -resistant Staphylococcus aureus (MRSA). PLoS One. 10:e0123206. doi:10.1371/journal.pone.0123206

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.