Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 6
269
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Exploitation of the antifungal and antibiofilm activities of plumbagin against Cryptococcus neoformans

, , , , , , & show all
Pages 558-574 | Received 07 Mar 2022, Accepted 11 Jun 2022, Published online: 11 Jul 2022

References

  • Adusei EBA, Adosraku RK, Oppong-Kyekyeku J, Amengor CDK, Jibira Y. 2019. Resistance modulation action, time-kill kinetics assay, and inhibition of biofilm formation effects of plumbagin from Plumbago zeylanica Linn. J Trop Med. 2019:1250645.
  • Alalwan H, Rajendran R, Lappin DF, Combet E, Shahzad M, Robertson D, Nile CJ, Williams C, Ramage G. 2017. The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Front Microbiol. 8:659.
  • Ameismeier M, Zemp I, van den Heuvel J, Thoms M, Berninghausen O, Kutay U, Beckmann R. 2020. Structural basis for the final steps of human 40S ribosome maturation. Nature. 587:683–687. doi:10.1038/s41586-020-2929-x
  • Appiah T, Boakye YD, Agyare C. 2017. Antimicrobial activities and time-kill kinetics of extracts of selected Ghanaian mushrooms. Evid Based Complement Alternat Med. 2017:4534350. doi:10.1155/2017/4534350
  • Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behav Brain Res. 125:279–284. doi:10.1016/s0166-4328(01)00297-2
  • Brandao FA, Derengowski LS, Albuquerque P, Nicola AM, Silva-Pereira I, Pocas-Fonseca MJ. 2015. Histone deacetylases inhibitors effects on Cryptococcus neoformans major virulence phenotypes. Virulence. 6:618–630. doi:10.1080/21505594.2015.1038014
  • Camacho E, Casadevall A. 2018. Cryptococcal traits mediating adherence to biotic and abiotic surfaces. J Fungi. 4:88. doi:10.3390/jof4030088
  • Camacho E, Vij R, Chrissian C, Prados-Rosales R, Gil D, O'Meally RN, Cordero R, Cole RN, McCaffery JM, Stark RE, et al. 2019. The structural unit of melanin in the cell wall of the fungal pathogen Cryptococcus neoformans. J Biol Chem. 294:10471–10489.
  • Caroline A. Schneider, Wayne S. Rasband, Kevin W. 2012. Eliceiri, NIH Image to ImageJ: 25 years of Image Analysis, Nat Methods. 9(7):671–675.
  • Chang YC, Kwon-Chung KJ. 1999. Isolation, characterization, and localization of a capsule-associated gene, CAP10, of Cryptococcus neoformans. J Bacteriol. 181:5636–5643. doi:10.1128/JB.181.18.5636-5643.1999
  • Chayakulkeeree M, Rude TH, Toffaletti DL, Perfect JR. 2007. Fatty acid synthesis is essential for survival of Cryptococcus neoformans and a potential fungicidal target. Antimicrob Agents Chemother. 51:3537–3545. doi:10.1128/AAC.00442-07
  • Chen X, Yin L, Peng L, Liang Y, Lv H, Ma T. 2020. Synergistic effect and mechanism of plumbagin with gentamicin against carbapenem-resistant Klebsiella pneumoniae. Infect Drug Resist. 13:2751–2759. doi:10.2147/IDR.S265753
  • Cheng R, Li W, Sample KM, Xu Q, Liu L, Yu F, Nie Y, Zhang X, Luo Z. 2020. Characterization of the transcriptional response of Candida parapsilosis to the antifungal peptide MAF-1A. PeerJ. 8:e9767. doi:10.7717/peerj.9767
  • Chong HS, Campbell L, Padula MP, Hill C, Harry E, Li SS, Wilkins MR, Herbert B, Carter D. 2012. Time-course proteome analysis reveals the dynamic response of Cryptococcus gattii cells to fluconazole. PLoS One. 7:e42835. doi:10.1371/journal.pone.0042835
  • de Paiva SR, Figueiredo MR, Aragao TV, Kaplan MA. 2003. Antimicrobial activity in vitro of plumbagin isolated from Plumbago species. Mem Inst Oswaldo Cruz. 98:959–961. doi:10.1590/s0074-02762003000700017
  • Dzoyem JP, Tangmouo JG, Lontsi D, Etoa FX, Lohoue PJ. 2007. In vitro antifungal activity of extract and plumbagin from the stem bark of Diospyros crassiflora Hiern (Ebenaceae). Phytother Res. 21:671–674. doi:10.1002/ptr.2140
  • Ganendren R, Carter E, Sorrell T, Widmer F, Wright L. 2006. Phospholipase B activity enhances adhesion of Cryptococcus neoformans to a human lung epithelial cell line. Microbes Infect. 8:1006–1015. doi:10.1016/j.micinf.2005.10.018
  • Garcia-Rubio R, de Oliveira HC, Rivera J, Trevijano-Contador N. 2019. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Front Microbiol. 10:2993.
  • Gupta P, Sarkar A, Sandhu P, Daware A, Das MC, Akhter Y, Bhattacharjee S. 2017. Potentiation of antibiotic against Pseudomonas aeruginosa biofilm: a study with plumbagin and gentamicin. J Appl Microbiol. 123:246–261. doi:10.1111/jam.13476
  • Holland LM, Schroder MS, Turner SA, Taff H, Andes D, Grozer Z, Gacser A, Ames L, Haynes K, Higgins DG, et al. 2014. Comparative phenotypic analysis of the major fungal pathogens Candida parapsilosis and Candida albicans. PLoS Pathog. 10:e1004365. doi:10.1371/journal.ppat.1004365
  • Imanishi Y, Tanaka R, Yaguchi T, Shimizu K. 2017. Capsule gene CAP64 is involved in the regulation of vacuole acidification in Cryptococcus neoformans. Mycoscience. 58:45–52. doi:10.1016/j.myc.2016.09.001
  • Joo MK, Park JJ, Kim SH, Yoo HS, Lee BJ, Chun HJ, Lee SW, Bak YT. 2015. Antitumorigenic effect of plumbagin by induction of SH2-containing protein tyrosine phosphatase 1 in human gastric cancer cells. Int J Oncol. 46:2380–2388. doi:10.3892/ijo.2015.2935
  • Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. 2019. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47:D590–D595. doi:10.1093/nar/gky962
  • Kernien JF, Snarr BD, Sheppard DC, Nett JE. 2017. The interface between fungal biofilms and innate immunity. Front Immunol. 8:1968. doi:10.3389/fimmu.2017.01968
  • Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 12:357–360. doi:10.1038/nmeth.3317
  • Kong Q, Yang R, Wang Z, Zhou W, Du X, Huang S, Jiang Y, Liu W, Sang H. 2017. Transcriptomic and virulence factors analyses of Cryptococcus neoformans hypoxia response. APMIS. 125:236–248. doi:10.1111/apm.12647
  • Kowalski CH, Morelli KA, Schultz D, Nadell CD, Cramer RA. 2020. Fungal biofilm architecture produces hypoxic microenvironments that drive antifungal resistance. Proc Natl Acad Sci USA. 117:22473–22483. doi:10.1073/pnas.2003700117
  • Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. 2006. Dose escalation of a curcuminoid formulation. BMC Complem Altern Med. 6:1–4.
  • Lim GH, Singhal R, Kachroo A, Kachroo P. 2017. Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol. 55:505–536. doi:10.1146/annurev-phyto-080516-035406
  • Lin YY, Shiau S, Fang CT. 2015. Risk factors for invasive Cryptococcus neoformans diseases: a case-control study. PLoS One. 10:e0119090. doi:10.1371/journal.pone.0119090
  • Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. 2008. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell. 135:174–188. doi:10.1016/j.cell.2008.07.046
  • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550. doi:10.1186/s13059-014-0550-8
  • Martinez LR, Casadevall A. 2015. Biofilm formation by Cryptococcus neoformans. Microbiol Spectr. 3. doi:10.1128/microbiolspec.MB-0006-2014
  • Morrison CJ, Hurst SF, Reiss E. 2003. Competitive binding inhibition enzyme-linked immunosorbent assay that uses the secreted aspartyl proteinase of Candida albicans as an antigenic marker for diagnosis of disseminated candidiasis. Clin Vaccine Immunol. 10:835–848. doi:10.1128/CDLI.10.5.835-848.2003
  • Mukherjee PK, Zhou G, Munyon R, Ghannoum MA. 2005. Candida biofilm: a well-designed protected environment. Med Mycol. 43:191–208. doi:10.1080/13693780500107554
  • Nair SV, Baranwal G, Chatterjee M, Sachu A, Vasudevan AK, Bose C, Banerji A, Biswas R. 2016. Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans. Int J Med Microbiol. 306:237–248. doi:10.1016/j.ijmm.2016.05.004
  • Nett JE, Marchillo K, Spiegel CA, Andes DR. 2010. Development and validation of an in vivo Candida albicans biofilm denture model. Infect Immun. 78:3650–3659. doi:10.1128/IAI.00480-10
  • Oliveira L, Ferrarini M, Dos Santos AP, Varela MT, Correa ITS, Tempone AG, Melhem MSC, Vallim MA, Fernandes JPS, Pascon RC. 2020. Coumaric acid analogues inhibit growth and melanin biosynthesis in Cryptococcus neoformans and potentialize amphotericin B antifungal activity. Eur J Pharm Sci. 153:105473. doi:10.1016/j.ejps.2020.105473
  • Padhye S, Dandawate P, Yusufi M, Ahmad A, Sarkar FH. 2012. Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev. 32:1131–1158. doi:10.1002/med.20235
  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, et al. 2018. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 16:1–33. doi:10.1186/s12951-018-0392-8
  • Piccioni M, Monari C, Kenno S, Pericolini E, Gabrielli E, Pietrella D, Perito S, Bistoni F, Kozel TR, Vecchiarelli A. 2013. A purified capsular polysaccharide markedly inhibits inflammatory response during endotoxic shock. Infect Immun. 81:90–98. doi:10.1128/IAI.00553-12
  • Porollo A, Sesterhenn TM, Collins MS, Welge JA, Cushion MT. 2014. Comparative genomics of pneumocystis species suggests the absence of genes for myo-inositol synthesis and reliance on inositol transport and metabolism. mBio. 5:e01834. doi:10.1128/mBio.01834-14
  • Qian W, Sun Z, Wang T, Yang M, Liu M, Zhang J, Li Y. 2020. Antimicrobial activity of eugenol against carbapenem-resistant Klebsiella pneumoniae and its effect on biofilms. Microb Pathog. 139:103924. doi:10.1016/j.micpath.2019.103924
  • Qian W, Yang M, Li X, Sun Z, Li Y, Wang X, Wang T. 2020. Anti-microbial and anti-biofilm activities of combined chelerythrine-sanguinarine and mode of action against Candida albicans and Cryptococcus neoformans in vitro. Colloids Surf B Biointerfaces. 191:111003. doi:10.1016/j.colsurfb.2020.111003
  • Qian W, Yang M, Wang T, Sun Z, Liu M, Zhang J, Zeng Q, Cai C, Li Y. 2020. Antibacterial mechanism of vanillic acid on physiological, morphological, and biofilm properties of carbapenem-resistant Enterobacter hormaechei. J Food Prot. 83:576–583. doi:10.4315/JFP-19-469
  • Qu L, She P, Wang Y, Liu F, Zhang D, Chen L, Luo Z, Xu H, Qi Y, Wu Y. 2016. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiologyopen. 5:402–412. doi:10.1002/mbo3.338
  • Rahman-Soad A, Davila-Lara A, Paetz C, Mithofer A. 2021. Plumbagin, a potent naphthoquinone from nepenthes plants with growth inhibiting and larvicidal activities. Molecules. 26:825. doi:10.3390/molecules26040825
  • Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A, Boulware DR. 2017. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis. 17:873–881. doi:10.1016/S1473-3099(17)30243-8
  • Ravi S, Pierce C, Witt C, Wormley FL. Jr. 2009. Biofilm formation by Cryptococcus neoformans under distinct environmental conditions. Mycopathologia. 167:307–314. doi:10.1007/s11046-008-9180-6
  • Reuwsaat JCV, Agustinho DP, Motta H, Chang AL, Brown H, Brent MR, Kmetzsch L, Doering TL. 2021. The transcription factor Pdr802 regulates titan cell formation and pathogenicity of Cryptococcus neoformans. mBio. 12:e03457–20. doi:10.1128/mBio.03457-20
  • Rodrigues ML, Nimrichter L, Oliveira DL, Frases S, Miranda K, Zaragoza O, Alvarez M, Nakouzi A, Feldmesser M, Casadevall A. 2007. Vesicular polysaccharide export in Cryptococcus neoformans is a eukaryotic solution to the problem of fungal trans-cell wall transport. Eukaryot Cell. 6:48–59. doi:10.1128/EC.00318-06
  • Song JW, Shin JH, Kee SJ, Kim SH, Shin MG, Suh SP, Ryang DW. 2009. Expression of CgCDR1, CgCDR2, and CgERG11 in Candida glabrata biofilms formed by bloodstream isolates. Med Mycol. 47:545–548. doi:10.1080/13693780802210726
  • Strzelczyk JK, Slemp-Migiel A, Rother M, Gołąbek K, Wiczkowski A. 2013. Nucleotide substitutions in the Candida albicans ERG11 gene of azole-susceptible and azole-resistant clinical isolates. Acta Biochim Pol. 60:547–552.
  • Subramaniya BR, Srinivasan G, Sadullah SS, Davis N, Subhadara LB, Halagowder D, Sivasitambaram ND. 2011. Apoptosis inducing effect of plumbagin on colonic cancer cells depends on expression of COX-2. PLoS One. 6:e18695. doi:10.1371/journal.pone.0018695
  • Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W, Viyanant V, Karbwang J, Na-Bangchang K. 2014. Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med. 14:15. doi:10.1186/1472-6882-14-15
  • Tavares ER, Gionco B, Morguette AEB, Andriani GM, Morey AT, do Carmo AO, de Pádua Pereira U, Andrade G, de Oliveira AG, Pinge-Filho P, et al. 2019. Phenotypic characteristics and transcriptome profile of Cryptococcus gattii biofilm. Sci Rep. 9:6438. doi:10.1038/s41598-019-42896-2
  • Toberna CP, Kram JJF, Beck ET, Ray S, Gavinski T, Sterkel AK, Baumgardner DJ. 2020. Attempted isolation of Cryptococcus species and incidental isolation of exophiala dermatitidis from human oral cavities. Mycopathologia. 185:1051–1055. doi:10.1007/s11046-020-00490-5
  • Wang Y, Casadevall A. 1994. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun. 62:3004–3007. doi:10.1128/iai.62.7.3004-3007.1994
  • Xiao CW, Wang JY, Liao ZF, Huang YE, Ji QAN, Liu Y, Su F, Xu LJ, Wei Q, Pan Y, et al. 2021. Assessment of the mechanism of drug resistance in Trichophyton mentagrophytes in response to various substances. BMC Genomics. 22:250. doi:10.1186/s12864-021-07520-6
  • Xue CY. 2015. Finding the sweet spot: how human fungal pathogens acquire and turn the sugar inositol against their hosts. mbio. 6:e00109-15. doi:10.1128/mBio.00109-15
  • Yu G, Wang LG, Han Y, He QY. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 16:284–287. doi:10.1089/omi.2011.0118
  • Zaragoza O. 2019. Basic principles of the virulence of Cryptococcus. Virulence. 10:490–501. doi:10.1080/21505594.2019.1614383
  • Zhao ZM, Shang XF, Lawoe RK, Liu YQ, Zhou R, Sun Y, Yan YF, Li JC, Yang GZ, Yang CJ. 2019. Anti-phytopathogenic activity and the possible mechanisms of action of isoquinoline alkaloid sanguinarine. Pestic Biochem Physiol. 159:51–58. doi:10.1016/j.pestbp.2019.05.015
  • Zuo R, Garrison AT, Basak A, Zhang PL, Huigens RW, Ding YS. 2016. In vitro antifungal and antibiofilm activities of halogenated quinoline analogs against Candida albicans and Cryptococcus neoformans. Int J Antimicrob Agents. 48:208–211. doi:10.1016/j.ijantimicag.2016.04.019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.