Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 6
196
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Growth and biofilm formation of Cupriavidus metallidurans CH34 on different metallic and polymeric materials used in spaceflight applications

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 643-655 | Received 14 Feb 2022, Accepted 24 Jul 2022, Published online: 04 Aug 2022

References

  • Acres JM, Youngapelian MJ, Nadeau J. 2021. The influence of spaceflight and simulated microgravity on bacterial motility and chemotaxis. NPJ Microgravity. 7:7. doi:10.1038/s41526-021-00135-x
  • Alfa MJ, Ribeiro MM, da Costa Luciano C, Franca R, Olson N, DeGagne P, Singh H. 2017. A novel polytetrafluoroethylene-channel model, which simulates low levels of culturable bacteria in buildup biofilm after repeated endoscope reprocessing. Gastrointest Endosc. 86:442–451 e441. doi:10.1016/j.gie.2017.05.014
  • Bakker DP, Busscher HJ, van der Mei HC. 2002. Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions. Microbiology (Reading). 148:597–603. doi:10.1099/00221287-148-2-597
  • Barnes AM, Ballering KS, Leibman RS, Wells CL, Dunny GM. 2012. Enterococcus faecalis produces abundant extracellular structures containing DNA in the absence of cell lysis during early biofilm formation. mBio. 3:e00193-00112. doi:10.1128/mBio.00193-12
  • Berggren D, Bertling S, Heijerick D, Herting G, Koundakjian P, Leygraf C, Odnevall Wallinder I. 2004. Release of chromium, nickel and iron from stainless steel exposed under atmospheric conditions and the environmental interaction of these metals: a combined field and laboratory investigation, Eurofer and Swedish Steel Association.
  • Bijlani S, Stephens E, Singh NK, Venkateswaran K, Wang CCC. 2021. Advances in space microbiology. iScience. 24:102395. doi:10.1016/j.isci.2021.102395
  • Buzzo JR, Devaraj A, Gloag ES, Jurcisek JA, Robledo-Avila F, Kesler T, Wilbanks K, Mashburn-Warren L, Balu S, Wickham J, et al. 2021. Z-form extracellular DNA is a structural component of the bacterial biofilm matrix. Cell. 184:5740–5758. e5717doi:10.1016/j.cell.2021.10.010.
  • Byloos B, Coninx I, Van Hoey O, Cockell C, Nicholson N, Ilyin V, Van Houdt R, Boon N, Leys N. 2017. The impact of space flight on survival and interaction of Cupriavidus metallidurans CH34 with Basalt, a Volcanic Moon Analog Rock. Front Microbiol. 8:671. doi:10.3389/fmicb.2017.00671
  • Campoccia D, Montanaro L, Arciola CR. 2021. Extracellular DNA (eDNA). A major ubiquitous element of the bacterial biofilm architecture. IJMS. 22:9100. doi:10.3390/ijms22169100
  • Cerca N, Pier GB, Vilanova M, Oliveira R, Azeredo J. 2005. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res Microbiol. 156:506–514. doi:10.1016/j.resmic.2005.01.007
  • Chen G, Walker SL. 2007. Role of solution chemistry and ion valence on the adhesion kinetics of groundwater and marine bacteria. Langmuir. 23:7162–7169. doi:10.1021/la0632833
  • Cockell CS, Santomartino R, Finster K, Waajen AC, Eades LJ, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, Leys N, et al. 2020. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat Commun. 11:5523. doi:10.1038/s41467-020-19276-w
  • Cwalina B, Dec W, Michalska JK, Jaworska-Kik M, Student S. 2017. Initial stage of the biofilm formation on the NiTi and Ti6Al4V surface by the sulphur-oxidizing bacteria and sulphate-reducing bacteria. J Mater Sci Mater Med. 28:173. doi:10.1007/s10856-017-5988-2
  • Das T, Sharma PK, Busscher HJ, van der Mei HC, Krom BP. 2010. Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol. 76:3405–3408. doi:10.1128/AEM.03119-09
  • De Gelder J, Vandenabeele P, De Boever P, Mergeay M, Moens L, De Vos P. 2009. Raman spectroscopic analysis of Cupriavidus metallidurans LMG 1195 (CH34) cultured in low-shear microgravity conditions. Microgravity Sci Technol. 21:217–223. doi:10.1007/s12217-008-9037-0
  • Diaz A, Li W, Irwin TD, Calle LM, Callahan MR. 2019. Investigation of biofilm formation and control for spacecraft – an early literature review. 49th International Conference on Environmental Systems. Boston, Massachusetts.
  • Flemming HC. 1998. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym Degrad Stab. 59:309–315.
  • Guan N, Liu L. 2020. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol. 104:51–65. doi:10.1007/s00253-019-10226-1
  • Gyo M, Nikaido T, Okada K, Yamauchi J, Tagami J, Matin K. 2008. Surface response of fluorine polymer-incorporated resin composites to cariogenic biofilm adherence. Appl Environ Microbiol. 74:1428–1435. doi:10.1128/AEM.02039-07
  • Gyurcsik B, Nagy L. 2000. Carbohydrates as ligands: coordination equilibria and structure of the metal complexes. Coord Chem Rev. 203:81–149. doi:10.1016/S0010-8545(99)00183-6
  • Hamadi F, Latrache H, Zekraoui M, Ellouali M, Bengourram J. 2009. Effect of pH on surface energy of glass and Teflon and theoretical prediction of Staphylococcus aureus adhesion. Mater Sci Eng C. 29:1302–1305. doi:10.1016/j.msec.2008.10.023
  • Harrison JJ, Ceri H, Turner RJ. 2007. Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol. 5:928–938. doi:10.1038/nrmicro1774
  • Hedberg YS, Odnevall Wallinder I. 2015. Metal release from stainless steel in biological environments: a review. Biointerphases. 11:018901. doi:10.1116/1.4934628
  • Herting G, Wallinder IO, Leygraf C. 2006. Factors that influence the release of metals from stainless steels exposed to physiological media. Corros. Sci. 48:2120–2132. doi:10.1016/j.corsci.2005.08.006
  • Horneck G, Klaus DM, Mancinelli RL. 2010. Space microbiology. Microbiol Mol Biol Rev. 74:121–156. doi:10.1128/MMBR.00016-09
  • Huang B, Li DG, Huang Y, Liu CT. 2018. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil Med Res. 5:18. doi:10.1186/s40779-018-0162-9
  • Ibanez de Aldecoa AL, Zafra O, Gonzalez-Pastor JE. 2017. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol. 8:1390. doi:10.3389/fmicb.2017.01390
  • Ishida Y, Kadota H. 1981. Growth patterns and substrate requirements of naturally occurring obligate oligotrophs. Microb Ecol. 7:123–130. doi:10.1007/BF02032494
  • Jacobsen M, Clausen PP, Smidth S. 1980. The effect of fixation and trypsinization on the immunohistochemical demonstration of intracellular immunoglobulin in paraffin embedded material. Acta Pathol Microbiol Scand A. 88:369–376. doi:10.1111/j.1699-0463.1980.tb02508.x
  • Kim M, Jeon J, Kim J. 2018. Streptococcus mutans extracellular DNA levels depend on the number of bacteria in a biofilm. Sci. Rep. 8:13313. doi:10.1038/s41598-018-31275-y
  • Klintworth R, Reher HJ, Viktorov AN, Bohle D. 1999. Biological induced corrosion of materials II: new test methods and experiences from MIR station. Acta Astronaut. 44:569–578. doi:10.1016/S0094-5765(99)00069-7
  • Leroy B, Rosier C, Erculisse V, Leys N, Mergeay M, Wattiez R. 2010. Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics. 10:2281–2291. doi:10.1002/pmic.200900286
  • Leys N, Baatout S, Rosier C, Dams A, s'Heeren C, Wattiez R, Mergeay M. 2009. The response of Cupriavidus metallidurans CH34 to spaceflight in the international space station. Antonie Van Leeuwenhoek. 96:227–245. doi:10.1007/s10482-009-9360-5
  • Liu J, Madec JY, Bousquet-Melou A, Haenni M, Ferran AA. 2021. Destruction of Staphylococcus aureus biofilms by combining an antibiotic with subtilisin A or calcium gluconate. Sci Rep. 11:6225. doi:10.1038/s41598-021-85722-4
  • Luo TL, Hayashi M, Zsiska M, Circello B, Eisenberg M, Gonzalez-Cabezas C, Foxman B, Marrs CF, Rickard AH. 2019. Introducing BAIT (Biofilm Architecture Inference Tool): a software program to evaluate the architecture of oral multi-species biofilms. Microbiology (Reading). 165:527–537. doi:10.1099/mic.0.000761
  • Maertens L, Coninx I, Claesen J, Leys N, Matroule JY, Van Houdt R. 2020. Copper resistance mediates long-term survival of Cupriavidus metallidurans in wet contact with metallic copper. Front Microbiol. 11:1208. doi:10.3389/fmicb.2020.01208
  • Mah TF, O'Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9:34–39. doi:10.1016/S0966-842X(00)01913-2
  • Maryatt BW. 2018. Lessons learned for the international space station potable water dispenser. 48th International Conference on Environmental Systems. Albuquerque, New Mexico.
  • Mergeay M. 1995. Heavy metal resistances in microbial ecosystems. In Akkermans, ADL, Van Elsas, JD, De Bruijn, FJ, editors. Molecular microbial ecology manual. Dordrecht: Springer; p. 439–455. doi:10.1007/978-94-011-0351-0_30
  • Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol. 162:328–334. doi:10.1128/jb.162.1.328-334.1985
  • Mijnendonckx K, Ali MM, Provoost A, Janssen P, Mergeay M, Leys N, Charlier D, Monsieurs P, Van Houdt R. 2019. Spontaneous mutation in the AgrRS two-component regulatory system of Cupriavidus metallidurans results in enhanced silver resistance. Metallomics. 11:1912–1924. doi:10.1039/c9mt00123a
  • Mijnendonckx K, Provoost A, Ott CM, Venkateswaran K, Mahillon J, Leys N, Van Houdt R. 2013. Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. Microb Ecol. 65:347–360. doi:10.1007/s00248-012-0139-2
  • Minh Tran T, MacIntyre A, Khokhani D, Hawes M, Allen C. 2016. Extracellular DNases of Ralstonia solanacearum modulate biofilms and facilitate bacterial wilt virulence. Environ Microbiol. 18:4103–4117. doi:10.1111/1462-2920.13446
  • Mumme T, Müller-Rath R, Jakobi N, Weißkopf M, Dott W, Marx R, Wirtz D-C. 2005. In vitro serum levels of metal ions released from orthopaedic implants. Eur J Orthop Surg Traumatol. 15:83–89. doi:10.1007/s00590-004-0206-6
  • National Research Council. 2000. Methods for developing spacecraft water exposure guidelines. Washington, DC: The National Academies Press. doi:10.17226/9892
  • Okshevsky M, Meyer RL. 2015. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol. 41:341–352. doi:10.3109/1040841X.2013.841639
  • Okshevsky M, Regina VR, Meyer RL. 2015. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol. 33:73–80. doi:10.1016/j.copbio.2014.12.002
  • Padan E, Bibi E, Ito M, Krulwich TA. 2005. Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta. 1717:67–88. doi:10.1016/j.bbamem.2005.09.010
  • Pal A, Paul AK. 2013. Optimization of cultural conditions for production of extracellular polymeric substances (EPS) by Serpentine Rhizobacterium Cupriavidus pauculus KPS 201. J Polym. 2013:1–7. doi:10.1155/2013/692374
  • Panlilio H, Rice CV. 2021. The role of extracellular DNA in the formation, architecture, stability, and treatment of bacterial biofilms. Biotechnol Bioeng. 118:2129–2141. doi:10.1002/bit.27760
  • Percival S. 1999. The effect of molybdenum on biofilm development. J Ind Microbiol Biotechnol. 23:112–117. doi:10.1038/sj.jim.2900712
  • Percival SL, Beech IB, Edyvean RGJ, Knapp JS, Wales DS. 1997. Biofilm development on 304 and 316 stainless steels in a potable water system. Water & Environment J. 11:289–294. doi:10.1111/j.1747-6593.1997.tb00131.x
  • Petala M, Tsiridis V, Darakas E, Kostoglou M. 2020. Longevity aspects of potable water disinfected by ionic silver: kinetic experiments and modeling. Water. 12:258. doi:10.3390/w12010258.
  • Roman MC, Minton-Summers S. 1998. Assessment of biofilm formation in the International Space Station Water Recovery and Management system. Life Support Biosph Sci. 5:45–51.
  • Santomartino R, Waajen AC, de Wit W, Nicholson N, Parmitano L, Loudon CM, Moeller R, Rettberg P, Fuchs FM, Van Houdt R, et al. 2020. No effect of microgravity and simulated mars gravity on final bacterial cell concentrations on the international space station: applications to space bioproduction. Front Microbiol. 11:579156. doi:10.3389/fmicb.2020.579156
  • Sawyer DT. 1964. Metal-gluconate complexes. Chem Rev. 64:633–643. doi:10.1021/cr60232a003
  • Schultz JR, Taylor RD, Flanagan DT, Carr SE, Bruce RJ, Svoboda JV, Huls MH, Sauer RL, Pierson DL. 1991. Biofilm formation and control in a simulated spacecraft water system: two-year results. SAE Trans. 100:1056–1066.
  • Shelobolina ES, Walker DK, Parker AE, Lust DV, Schultz JM, Dickerman GE. 2018. Inactivation of Pseudomonas aeruginosa biofilms formed under high shear stress on various hydrophilic and hydrophobic surfaces by a continuous flow of ozonated water. Biofouling. 34:826–834. doi:10.1080/08927014.2018.1506023
  • Sheng X, Ting YP, Pehkonen SO. 2008. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. J Colloid Interface Sci. 321:256–264. doi:10.1016/j.jcis.2008.02.038
  • Siems K, Müller DW, Maertens L, Ahmed A, Van Houdt R, Mancinelli RL, Baur S, Brix K, Kautenburger R, Caplin N, et al. 2022. Testing laser-structured antimicrobial surfaces under space conditions: the design of the ISS experiment BIOFILMS. Front Space Technol. 2:773244. doi:10.3389/frspt.2021.773244
  • Sinde E, Carballo J. 2000. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber and polytetrafluorethylene: the influence of free energy and the effect of commercial sanitizers. Food Microbiol. 17:439–447.
  • Squire MD, Rotter HA, Lee J, Packham N, Brady TK, Kelly R, Ott CM. 2014. International Space Station (ISS) Orbital Replaceable Unit (ORU) Wet Storage Risk Assessment. NASA.
  • Stoodley P, Sauer K, Davies DG, Costerton JW. 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol. 56:187–209. doi:10.1146/annurev.micro.56.012302.160705
  • Thompson AF, English EL, Nock AM, Willsey GG, Eckstrom K, Cairns B, Bavelock M, Tighe SW, Foote A, Shulman H, et al. 2020. Characterizing species interactions that contribute to biofilm formation in a multispecies model of a potable water bacterial community. Microbiology (Reading). 166:34–43. doi:10.1099/mic.0.000849
  • Van Houdt R, Leys N. 2020. Monitoring the microbial burden in manned space stations. In: Choukèr A, editor. Stress challenges and immunity in space: from mechanisms to monitoring and preventive strategies. Cham: Springer, p. 463–475. doi:10.1007/978-3-030-16996-1_25
  • Van Houdt R, Michiels CW. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol. 109:1117–1131. doi:10.1111/j.1365-2672.2010.04756.x
  • Van Houdt R, Vandecraen J, Leys N, Monsieurs P, Aertsen A. 2021. Adaptation of Cupriavidus metallidurans CH34 to toxic zinc concentrations involves an uncharacterized ABC-type transporter. Microorganisms. 9:309. doi:10.3390/microorganisms9020309
  • Walker SL. 2005. The role of nutrient presence on the adhesion kinetics of Burkholderia cepacia G4g and ENV435g. Colloids Surf B Biointerfaces. 45:181–188. doi:10.1016/j.colsurfb.2005.08.007
  • Wang D, Jia R, Kumseranee S, Punpruk S, Gu TY. 2021. Comparison of 304 and 316 stainless steel microbiologically influenced corrosion by an anaerobic oilfield biofilm consortium. Eng Failure Anal. 122:105275. doi:10.1016/j.engfailanal.2021.105275.
  • Wang A, Jones IP, Landini G, Mei J, Tse YY, Li YX, Ke L, Huang Y, Liu LI, Wang C, et al. 2018. Backscattered electron imaging and electron backscattered diffraction in the study of bacterial attachment to titanium alloy structure. J Microsc. 270:53–63. doi:10.1111/jmi.12649
  • Wang S, Liu X, Liu H, Zhang L, Guo Y, Yu S, Wozniak DJ, Ma LZ. 2015. The exopolysaccharide Psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environ Microbiol Rep. 7:330–340. doi:10.1111/1758-2229.12252
  • Wieland PO, Center G. 1998. Living together in space: the design and operation of the life support systems on the International Space Station. National Aeronautics and Space Administration, Marshall Space Flight Center.
  • Yang J, Barrila J, Mark Ott C, King O, Bruce R, McLean RJC, Nickerson CA. 2021. Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. NPJ Biofilms Microbiomes. 7:70. doi:10.1038/s41522-021-00240-5
  • Zea L, McLean RJC, Rook TA, Angle G, Carter DL, Delegard A, Denvir A, Gerlach R, Gorti S, McIlwaine D, et al. 2020. Potential biofilm control strategies for extended spaceflight missions. Biofilm. 2:100026. doi:10.1016/j.bioflm.2020.100026
  • Zhang M, Chen S, Gnegy M, Ye C, Lin W, Lin H, Yu X. 2018. Environmental strains potentially contribute to the proliferation and maintenance of antibiotic resistance in drinking water: a case study of Cupriavidus metallidurans. Sci Total Environ. 643:819–826. doi:10.1016/j.scitotenv.2018.06.013
  • Zheng S, Bawazir M, Dhall A, Kim HE, He L, Heo J, Hwang G. 2021. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front Bioeng Biotechnol. 9:643722. doi:10.3389/fbioe.2021.643722
  • Zhou S, Schoneich C, Singh SK. 2011. Biologics formulation factors affecting metal leachables from stainless steel. AAPS PharmSciTech. 12:411–421. doi:10.1208/s12249-011-9592-3

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.