Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 7
428
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Boundary layer hydrodynamics of patchy biofilms

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 696-714 | Received 26 Nov 2021, Accepted 19 Aug 2022, Published online: 05 Sep 2022

References

  • Adrian RJ, Christensen KT, Liu Z-C. 2000. Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids. 29:275–290. doi:10.1007/s003489900087
  • Andrewartha J, Perkins K, Sargison J, Osborn J, Walker G, Henderson A, Hallegraeff G. 2010. Drag force and surface roughness measurements on freshwater biofouled surfaces. Biofouling. 26:487–496. doi:10.1080/08927014.2010.482208.
  • Antonia RA, Luxton RE. 1971. The response of a turbulent boundary layer to a step change in surface roughness Part 1. Smooth to rough. J Fluid Mech. 48:721–761. doi:10.1017/S0022112071001824
  • Battin TJ, Kaplan LA, Denis Newbold J, Hansen CME. 2003. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature. 426:439–442. doi:10.1038/nature02152.
  • de Beer D, Kühl M. 2001. Interfacial microbial mats and biofilms. In: Boudreau BP, Jørgensen BB, editors. The benthic boundary layer. New York, NY: Oxford University Press; p. 374–394.
  • Brzek BG, Cal RB, Johansson G, Castillo L. 2007. Transitionally rough zero pressure gradient turbulent boundary layers. Exp Fluids. 44:115–124. doi:10.1007/s00348-007-0380-5
  • Celler K, Hödl I, Simone A, Battin TJ, Picioreanu C. 2014. A mass-spring model unveils the morphogenesis of phototrophic Diatoma biofilms. Sci Rep. 4:3649. doi:10.1038/srep03649.
  • Decho AW. 2000. Microbial biofilms in intertidal systems: an overview. Cont Shelf Res. 20:1257–1273. doi:10.1016/S0278-4343(00)00022-4
  • Depetris A, Tagliavini G, Peter H, Kühl M, Holzner M, Battin TJ. 2022. Biophysical properties at patch scale shape the metabolism of biofilm landscapes. NPJ Biofilms Microbiomes. 8:5. doi:10.1038/s41522-022-00269-0.
  • Dobretsov S, Rittschof D. 2020. Love at first taste: induction of larval settlement by marine microbes. Int J Mol Sci. 21:731. doi:10.3390/ijms21030731
  • Eckman JE. 1990. A model of passive settlement by planktonic larvae onto bottoms of differing roughness. Limnol Oceanogr. 35:887–901. doi:10.4319/lo.1990.35.4.0887
  • Flack KA, Schultz MP. 2014. Roughness effects on wall-bounded turbulent flows. Phys Fluids. 26:101305. doi:10.1063/1.4896280
  • Flack KA, Schultz MP, Connelly JS. 2007. Examination of a critical roughness height for outer layer similarity. Phys Fluids. 19:095104. doi:10.1063/1.2757708
  • Flack KA, Schultz MP, Rose WB. 2012. The onset of roughness effects in the transitionally rough regime. Int J Heat Fluid Flow. 35:160–167. doi:10.1016/j.ijheatfluidflow.2012.02.003
  • Florens E, Eiff O, Moulin F. 2013. Defining the roughness sublayer and its turbulence statistics. Exp Fluids. 54:1500. doi:10.1007/s00348-013-1500-z
  • Fuchs HL, Neubert MG, Mullineaux LS. 2007. Effects of turbulence-mediated larval behavior on larval supply and settlement in tidal currents. Limnol Oceanogr. 52:1156–1165. doi:10.4319/lo.2007.52.3.1156
  • Graba M, Sauvage S, Majdi N, Mialet B, Moulin FY, Urrea G, Buffan-Dubau E, Tackx M, Sabater S, Sanchez-Pérez J-M. 2014. Modelling epilithic biofilms combining hydrodynamics, invertebrate grazing and algal traits. Freshw Biol. 59:1213–1228. doi:10.1111/fwb.12341
  • Graba M, Sauvage S, Moulin FY, Urrea G, Sabater S, Sanchez-Pérez JM. 2013. Interaction between local hydrodynamics and algal community in epilithic biofilm. Water Res. 47:2153–2163. doi:10.1016/j.watres.2013.01.011.
  • Grass AJ. 1971. Structural features of turbulent flow over smooth and rough boundaries. J Fluid Mech. 50:233–255. doi:10.1017/S0022112071002556
  • Hadfield M, Paul V. 2001. Natural Chemical Cues for Settlement and Metamorphosis of Marine-Invertebrate Larvae. In: McClintock J, Baker B, editors. Marine chemical ecology. Vol. 20015660: Boca Raton: CRC Press; p. 431–461. doi:10.1201/9781420036602.ch13
  • Hansen JCR, Reidenbach MA. 2012. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Mar Ecol Prog Ser. 448:271–287. doi:10.3354/meps09225
  • Hartenberger JD, Callison EG, Gose JW, Perlin M, Ceccio SL. 2020. Drag production mechanisms of filamentous biofilms. Biofouling. 36:736–752. doi:10.1080/08927014.2020.1806250.
  • Hata T, Madin JS, Cumbo VR, Denny M, Figueiredo J, Harii S, Thomas CJ, Baird AH. 2017. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Sci Rep. 7:2249. doi:10.1038/s41598-017-02402-y
  • Hendriks IE, van Duren LA, Herman PM. 2006. Turbulence levels in a flume compared to the field: implications for larval settlement studies. J Sea Res. 55:15–29. doi:10.1016/j.seares.2005.09.005
  • Hunsucker JT, Hunsucker KZ, Gardner H, Swain G. 2016. Influence of hydrodynamic stress on the frictional drag of biofouling communities. Biofouling. 32:1209–1221. doi:10.1080/08927014.2016.1242724.
  • Hunsucker KZ, Koka A, Lund G, Swain G. 2014. Diatom community structure on in-service cruise ship hulls. Biofouling. 30:1133–1140. doi:10.1080/08927014.2014.974576.
  • Hunsucker KZ, Vora GJ, Hunsucker JT, Gardner H, Leary DH, Kim S, Lin B, Swain G. 2018. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating. Biofouling. 34:162–172. doi:10.1080/08927014.2017.1417395.
  • Kevin K, Monty JP, Bai HL, Pathikonda G, Nugroho B, Barros JM, Christensen KT, Hutchins N. 2017. Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern. J Fluid Mech. 813:412–435. doi:10.1017/jfm.2016.879
  • Koehl MAR. 2006. The fluid mechanics of arthropod sniffing in turbulent odor plumes. Chem Senses. 31:93–105. doi:10.1093/chemse/bjj009.
  • Koehl MRA. 2007. Mini review: hydrodynamics of larval settlement into fouling communities. Biofouling. 23:357–368. doi:10.1080/08927010701492250.
  • Koehl MAR, Perotti E, Sischo D, Hata T, Hadfield MG. 2022. Effects of currents, waves, and biofilms on motion and surface contacts by tubeworm larvae swimming above or below surfaces. Mar Ecol Prog Ser. 686:107–126. doi:10.3354/meps14001
  • Krogstadt PÅ, Antonia RA. 1999. Surface roughness effects in turbulent boundary layers. Exp Fluids. 27:450–460. doi:10.1007/s003480050370
  • Leonardi S, Orlandi P, Antonia RA. 2007. Properties of d-and k-type roughness in a turbulent channel flow. Phys Fluids. 19:125101. doi:10.1063/1.2821908
  • Ligrani PM, Moffat RJ. 1986. Structure of transitionally rough and fully rough turbulent boundary layers. J Fluid Mech. 162:69–98. doi:10.1017/S0022112086001933
  • Lu SS, Willmarth WW. 1973. Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech. 60:481–511. doi:10.1017/S0022112073000315
  • Martino R, Paterson A, Piva M. 2012. Double-average mean flow and local turbulence intensity profiles from PIV measurements for an open channel flow with rigid vegetation. Environ Fluid Mech. 12:45–62. doi:10.1007/s10652-011-9221-4
  • Mignot E, Barthelemy E, Hurther D. 2009. Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J Fluid Mech. 618:279–303. doi:10.1017/S0022112008004643
  • Mignot E, Hurther D, Barthelemy E. 2009. On the structure of shear stress and turbulent kinetic energy flux across the roughness layer of a gravel-bed channel flow. J Fluid Mech. 638:423–452. doi:10.1017/S0022112009990772
  • Murphy EAK, Barros JM, Schultz MP, Flack KA, Steppe CN, Reidenbach MA. 2018. Roughness effects of diatomaceous slime fouling on turbulent boundary layer hydrodynamics. Biofouling. 34:1–12. doi:10.1080/08927014.2018.1517867
  • Nepf HM, Vivoni ER. 2000. Flow structure in depth-limited, vegetated flow. J Geophys Res. 105:28547–28557. doi:10.1029/2000JC900145
  • Nikora V, McEwan I, McLean S, Coleman S, Pokrajac D, Walters R. 2007. Double-averaging concept for rough-bed open-channel and overland flows: theoretical background. J Hydraul Eng. 133:873–883. doi:10.1061/(ASCE)0733-9429(2007)133:8(873)
  • Nikuradse J. 1933. Laws of flow in rough pipes. NACA Technical Memorandum 1292.
  • Poggi D, Katul GG, Albertson JD. 2004. A note on the contribution of dispersive fluxes to momentum transfer within canopies. Bound-Layer Meteorol. 111:615–621. doi:10.1023/B:BOUN.0000016563.76874.47
  • Pokrajac D, Campbell LJ, Nikora V, Manes C, McEwan I. 2007. Quadrant analysis of persistent spatial velocity perturbations over square-bar roughness. Exp Fluids. 42:413–423. doi:10.1007/s00348-006-0248-0
  • Raupach MR. 1981. Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech. 108:363–382. doi:10.1017/S0022112081002164
  • Raupach MR, Finnigan JJ, Brunei Y. 1996. Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78:351–382. doi:10.1007/978-94-017-0944-6_15
  • Raupach MR, Shaw RH. 1982. Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22:79–90. doi:10.1007/BF00128057
  • Reidenbach MA, Koseff JR, Monismith SG. 2007. Laboratory experiments of fine-scale mixing and mass transport within a coral canopy. Phys Fluids. 19:075107. doi:10.1063/1.2752189
  • Reidenbach MA, Limm M, Hondzo M, Stacey MT. 2010. Effects of bed roughness on boundary layer mixing and mass flux across the sediment-water interface. Water Resour Res. 46:W07530. doi:10.1029/2009WR008248
  • Schultz MP. 2000. Turbulent boundary layers on surfaces covered with filamentous algae. J Fluids Eng. 122:357–363. doi:10.1115/1.483265
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi:10.1080/08927010701461974.
  • Schultz MP, Bendick JA, Holm ER, Hertel WM. 2011. Economic impact of biofouling on a naval surface ship. Biofouling. 27:87–98. doi:10.1080/08927014.2010.542809.
  • Schultz MP, Finlay JA, Callow ME, Callow JA. 2003. Three models to relate detachment of low form fouling at laboratory and ship scale. Biofouling. 19:17–26. doi:10.1080/0892701031000089516
  • Schultz MP, Swain GW. 1999. The effect of biofilms on turbulent boundary layers. J Fluids Eng. 121:44–51. doi:10.1115/1.2822009
  • Schultz MP, Swain GW. 2000. The influence of biofilms on skin friction drag. Biofouling. 15:129–139. doi:10.1080/08927010009386304.
  • Schultz MP, Walker JM, Steppe CN, Flack KA. 2015. Impact of diatomaceous biofilms on the frictional drag of fouling-release coatings. Biofouling. 31:759–773. doi:10.1080/08927014.2015.1108407.
  • Snyder WH, Castro IP. 2002. The critical Reynolds number for rough-wall boundary layers. J Wind Eng Ind Aerodyn. 90:41–54. doi:10.1016/S0167-6105(01)00114-3
  • Stocking JB, Rippe JP, Reidenbach MA. 2016. Structure and dynamics of turbulent boundary layer flow over healthy and algae-covered corals. Coral Reefs. 35:1047–1059. doi:10.1007/s00338-016-1446-8
  • Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM. 1998. Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol Bioeng. 57:536–544. doi:10.1002/(SICI)1097-0290(19980305)57:5 < 536::AID-BIT5 > 3.0.CO;2-H
  • Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM. 1999. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng. 65:11.
  • Swain GW. 2010. The importance of ship hull coatings and maintenance as drivers for environmental sustainability. Proceedings of Ship Design and Operation for Environmental Sustainability; Mar 2010; London: Royal Institute of Naval Architects. doi:10.3940/rina.es.2010.17
  • Taherzadeh D, Picioreanu C, Horn H. 2012. Mass transfer enhancement in moving biofilm structures. Biophys J. 102:1483–1492. doi:10.1016/j.bpj.2012.02.033.
  • Telgmann U, Horn H, Morgenroth E. 2004. Influence of growth history on sloughing and erosion from biofilms. Water Res. 38:3671–3684. doi:10.1016/j.watres.2004.05.020.
  • Van Mooy BAS, Hmelo LR, Fredricks HF, Ossolinski JE, Pedler BE, Bogorff DJ, Smith PJS. 2014. Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings. Biofouling. 30:223–236. doi:10.1080/08927014.2013.861422.
  • Volino RJ, Schultz MP. 2018. Determination of wall shear stress from mean velocity and Reynolds shear stress profiles. Phys Rev Fluids. 3:034606.
  • Volino RJ, Schultz MP, Flack KA. 2007. Turbulence structure in rough- and smooth-wall boundary layers. J Fluid Mech. 592:263–293. doi:10.1017/S0022112007008518
  • Volino RJ, Schultz MP, Flack KA. 2009. Turbulence structure in a boundary layer with two-dimensional roughness. J Fluid Mech. 635:75–101. doi:10.1017/S0022112009007617
  • Volino RJ, Schultz MP, Flack KA. 2011. Turbulence structure in boundary layers over periodic two- and three-dimensional roughness. J Fluid Mech. 676:172–190. doi:10.1017/S0022112011000383
  • Walker JM, Flack KA, Lust EE, Schultz MP, Luznik L. 2014. Experimental and numerical studies of blade roughness and fouling on marine current turbine performance. Renew Energy. 66:257–267. doi:10.1016/j.renene.2013.12.012
  • Walker JM, Sargison JE, Henderson AD. 2013. Turbulent boundary-layer structure of flows over freshwater biofilms. Exp Fluids. 54:1628. doi:10.1007/s00348-013-1628-x
  • Wallace JM. 2016. Quadrant analysis in turbulence research: history and evolution. Annu Rev Fluid Mech. 48:131–158. doi:10.1146/annurev-fluid-122414-034550
  • Womack KM, Meneveau C, Schultz MP. 2019. Comprehensive shear stress analysis of turbulent boundary layer profiles. J Fluid Mech. 879:360–389. doi:10.1017/jfm.2019.673
  • Womack KM, Volino RJ, Meneveau C, Schultz MP. 2022. Turbulent boundary layer flow over regularly and irregularly arranged truncated cone surfaces. J Fluid Mech. 933:A38. doi:10.1017/jfm.2021.946
  • Wu Y, Christensen KT. 2006. Population trends of spanwise vortices in wall turbulence. J Fluid Mech. 568:55–76. doi:10.1017/S002211200600259X
  • Wu Y, Christensen KT. 2010. Spatial structure of a turbulent boundary layer with irregular surface roughness. J Fluid Mech. 655:380–418. doi:10.1017/S0022112010000960
  • Yuan J, Piomelli U. 2014. Roughness effects on the Reynolds stress budgets in near-wall turbulence. J Fluid Mech. 760:R1. doi:10.1017/jfm.2014.608
  • Yue W, Meneveau C, Parlange MB, Zhu W, Van Hout R, Katz J. 2007. A comparative quadrant analysis of turbulence in a plant canopy. Water Resour Res. 43:W05422.
  • Zargiel KA, Coogan JS, Swain GW. 2011. Diatom community structure on commercially available ship hull coatings. Biofouling. 27:955–965. doi:10.1080/08927014.2011.618268.
  • Zargiel KA, Swain GW. 2014. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings. Biofouling. 30:115–129. doi:10.1080/08927014.2013.847927.
  • Zhou J, Adrian RJ, Balachandar S, Kendall TM. 1999. Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech. 387:353–396. doi:10.1017/S002211209900467X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.