Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 9
211
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Inhibition of heterotrophic bacterial biofilm in the soil ferrosphere by Streptomyces spp. and Bacillus velezensis

&
Pages 916-925 | Received 06 Jun 2022, Accepted 18 Nov 2022, Published online: 28 Nov 2022

References

  • Aïmeur N, Houali K, Hamadou L, Benbrahim N, Kadri A. 2015. Influence of strain Bacillus cereus bacterium on corrosion behaviour of carbon steel in natural sea water. Corros Eng Sci Technol. 50:579–588. doi:10.1179/1743278215Y.0000000022
  • Andreyuk K, Kozlova I, Kopteva Z, Pilyashenko-Novokhatny A, Zanina V, Purish L. 2005. Microbial corrosion of underground structures. Kyiv: naukova Dumka Publishing House. (In Ukrainian)
  • Appleyard AN, Choi S, Read DM, Lightfoot A, Boakes S, Hoffmann A, Chopra I, Bierbaum G, Rudd BA, Dawson MJ, et al. 2009. Dissecting structural and functional diversity of the lantibiotic mersacidin. Chem Biol. 16:490–498. doi:10.1016/j.chembiol.2009.03.011
  • Balderas-Ruíz KA, Bustos P, Santamaria RI, González V, Cristiano-Fajardo SA, Barrera-Ortíz S, Mezo-Villalobos M, Aranda-Ocampo S, Guevara-García ÁA, Galindo E, et al. 2020. Bacillus velezensis 83 a bacterial strain from mango phyllosphere, useful for biological control and plant growth promotion. AMB Express. 10:163. doi:10.1186/s13568-020-01101-8
  • Banat IM, De Rienzo MAD, Quinn GA. 2014. Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol. 98:9915–9929. doi:10.1007/s00253-014-6169-6
  • Bano AS, Qazi JI. 2011. Soil buried mild steel corrosion by Bacillus cereus-SNB4 and its inhibition by Bacillus thuringiensis-SN8. Pak J Zool. 43:555–562.
  • Beale DJ, Karpe AV, Jadhav S, Muster TH, Palombo EA. 2015. Omics-based approaches and their use in the assessment of microbial-influenced corrosion of metals. Corros Rev. 34:1–15. doi:10.1515/corrrev-2015-0046
  • Beech IB, Gaylarde C. 1999. Recent advances in the study of biocorrosion: an overview. Rev Microbiol. 30:117–190. doi:10.1590/S0001-37141999000300001
  • Bleich R, Watrous JD, Dorrestein PC, Bowers AA, Shank EA. 2015. Thiopeptide antibiotics stimulate biofilm formation in Bacillus subtilis. Proc Natl Acad Sci U S A. 112:3086–3091. doi:10.1073/pnas.1414272112
  • Boeck LD, Berry DM, Mertz FP, Wetzel RW. 1992. A10255, a complex of novel growth-promoting thiopeptide antibiotics produced by a strain of. Taxonomy and fermentation Streptomyces gardneri studies. J Antibiot (Tokyo). 45:1222–1230. doi:10.7164/antibiotics.45.1222
  • Bonifay V, Wawrik B, Sunner J, Snodgrass EC, Aydin E, Duncan KE, Callaghan AV, Oldham A, Liengen T, Beech I. 2017. Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion. Front Microbiol. 8:99. doi:10.3389/fmicb.2017.00099
  • Boruta T. 2021. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World J Microbiol. 37:171.
  • Brötz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother. 42:154–160. doi:10.1128/AAC.42.1.154
  • Butcher RA, Schroeder FC, Fischbach MA, Straight PD, Kolter R, Walsh CT, Clardy J. 2007. The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc Natl Acad Sci U S A. 104:1506–1509. doi:10.1073/pnas.0610503104
  • Caldeira AT. 2021. Green mitigation strategy for cultural heritage using bacterial biocides. In Joseph E., editor. Microorganisms in the deterioration and preservation of cultural heritage. Cham: springer; p. 137–154.
  • Cayford BI, Jiang G, Keller J, Tyson G, Bond PL. 2017. Comparison of microbial communities across sections of a corroding sewer pipe and the effects of wastewater flooding. Biofouling. 33:780–792. doi:10.1080/08927014.2017.1369050
  • Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 25:1007–1014. doi:10.1038/nbt1325
  • Chen XH, Scholz R, Borriss M, Junge H, Mögel G, Kunz S, Borriss R. 2009. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J Biotechnol. 140:38–44. doi:10.1016/j.jbiotec.2008.10.015
  • Choi A-R, Patra JK, Kim WJ, Kang S-S. 2018. Antagonistic activities and probiotic potential of lactic acid bacteria derived from a plant-based fermented food. Front Microbiol. 9:1963. doi:10.3389/fmicb.2018.01963
  • Coman MM, Verdenelli MC, Cecchini C, Silvi S, Orpianesi C, Boyko N, Cresci A. 2014. In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501(®), Lactobacillus paracasei IMC 502(®) and SYNBIO(®) against pathogens. J Appl Microbiol. 117:518–527. doi:10.1111/jam.12544
  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM. 1995. Microbial biofilms. Annu Rev Microbiol. 49:711–745. doi:10.1146/annurev.mi.49.100195.003431
  • Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science. 284:1318–1322. doi:10.1126/science.284.5418.1318
  • Debono M, Molloy RM, Occolowitz JL, Paschal JW, Hunt AH, Michel KH, Martin JW. 1992. The structures of A10255 B, -G and -J: new thiopeptide antibiotics produced by Streptomyces gardneri. J Org Chem. 57:5200–5208. doi:10.1021/jo00045a037
  • Eduok U, Khaled M, Khalil A, Suleiman R, El Ali B. 2016. Probing the corrosion inhibiting role of thermophilic Bacillus licheniformis biofilm 1 on steel in a saline axenic culture. RSC Adv. 6:18246–18256. doi:10.1039/C5RA25381K
  • Egorov NS. 1965. Microbes antagonists and biological methods for determining antibiotic activity. Moscow: vysshaya Shkola. (in Russian)
  • Engelhardt K, Degnes KF, Kemmler M, Bredholt H, Fjaervik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotchev SB. 2010. Production of a new thiopeptide antibiotic, TP-1161, by a marine nocardiopsis species. Appl Environ Microbiol. 76:4969–4976. doi:10.1128/AEM.00741-10
  • Etim IN, Wei J, Dong J, Xu D, Chen N, Wei X, Su M, Ke W. 2018. Mitigation of the corrosion-causing Desulfovibrio desulfuricans biofilm using an organic silicon quaternary ammonium salt in alkaline media simulated concrete pore solutions. Biofouling. 34:1121–1137. doi:10.1080/08927014.2018.1547377
  • Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an “operational group B. amyloliquefaciens” within the B. subtilis species complex. Front Microbiol. 8:1–15.
  • Fazle Rabbee M, Baek K-H. 2020. Antimicrobial activities of lipopeptides and polyketides of Bacillus velezensis for agricultural applications. Molecules. 25:4973. doi:10.3390/molecules25214973
  • Fu C, Keller L, Bauer A, Brönstrup M, Froidbise A, Hammann P, Herrmann J, Mondesert G, Kurz M, Schiell M, et al. 2015. Biosynthetic studies of telomycin reveal new lipopeptides with enhanced activity. J Am Chem Soc. 137:7692–7705. doi:10.1021/jacs.5b01794
  • Gana ML, Kebbouche-Gana S, Touzi A, Zorgani MA, Pauss A, Lounici H, Mameri N. 2011. Antagonistic activity of Bacillus sp. obtained from an Algerian oilfield and chemical biocide THPS against sulfate-reducing bacteria consortium inducing corrosion in the oil industry. J Ind Microbiol Biotechnol. 38:391–404. doi:10.1007/s10295-010-0887-2
  • Hooper IR, Fardig OB, Joseph L. 1962. Telomycin and its production. U.S. patent. 3061516.
  • Hori K, Matsumoto S. 2010. Bacterial adhesion: from mechanism to control. Biochem Eng J. 48:424–434. doi:10.1016/j.bej.2009.11.014
  • Huang Y, Xu D, Huang L-y, Lou Y-t, Muhadesi J-B, Qian H-c, Zhou E-z, Wang B-j, Li X-T, Jiang Z, et al. 2021. Responses of soil microbiome to steel corrosion. NPJ Biofilms Microbiomes. 7:6–13. doi:10.1038/s41522-020-00175-3
  • Jayaraman A, Hallock PJ, Carson RM, Lee CC, Mansfeld FB, Wood TK. 1999. Inhibiting sulfate-reducing bacteria in biofilms on steel with antimicrobial peptides generated in situ. Appl Microbiol Biotechnol. 52:267–275. doi:10.1007/s002530051520
  • Kalyon B, Helaly SE, Scholz R, Nachtigall J, Vater J, Borriss R, Süssmuth RD. 2011. Plantazolicin A and B: structure elucidation of ribosomally synthesized thiazole/oxazole peptides from Bacillus amyloliquefaciens FZB42. Org Lett. 13:2996–2999. doi:10.1021/ol200809m
  • Khadayat K, Sherpa DD, Malla KP, Shrestha S, Rana N, Marasini BP, Khanal S, Rayamajhee B, Bhattarai BR, Parajuli N. 2020. Molecular identification and antimicrobial potential of Streptomyces species from Nepalese soil. Int J Microbiol. 2020:8817467. doi:10.1155/2020/8817467
  • Khan MA, Göpel Y, Milewski S, Görke B. 2016. Two small RNAs conserved in Enterobacteriaceae provide intrinsic resistance to antibiotics targeting the cell wall biosynthesis enzyme glucosamine-6-phosphate synthase. Front Microbiol. 7:908. doi:10.3389/fmicb.2016.00908
  • Khan R, Shen F, Khan K, Liu LX, Wu HH, Luo JQ, Wan YH. 2016. Biofouling control in membrane filtration system by newly isolated novel quorum quenching bacterium. RSC Adv. 6:28895–28903. doi:10.1039/C6RA01663D
  • Korenblum E, de Araujo LV, Guimarães CR, de Souza LM, Sassaki G, Abreu F, Nitschke M, Lins U, Freire DMG, Barreto-Bergter E, et al. 2012. Purification and characterization of a surfactin-like molecule produced by Bacillus sp. H2O-1 and its antagonistic effect against sulfate reducing bacteria. BMC Microbiol. 12:252. doi:10.1186/1471-2180-12-252
  • Kruszewska D, Sahl HG, Bierbaum G, Pag U, Hynes SO, Ljungh A. 2004. Mersacidin eradicates methicillin-resistant Staphylococcus aureus (MRSA) in a mouse rhinitis model. J Antimicrob Chemother. 54:648–653. doi:10.1093/jac/dkh387
  • Lamb AL. 2015. Breaking a pathogen’s iron will: inhibiting siderophore production as an antimicrobial strategy. Biochim Biophys Acta. 1854:1054–1070. doi:10.1016/j.bbapap.2015.05.001
  • Lee K, Kim I, Kim H, Ward AC, Goodfellow M. 1992. Numerical identification of a Streptomyces Strain producing thiol protease inhibitor. J Microbiol Biotechnol. 2:220–225.
  • Lee N, Hwang S, Kim W, Lee Y, Kim JH, Cho S, Kim HU, Yoon YJ, Oh MK, Palsson BO, et al. 2021. Systems and synthetic biology to elucidate secondary metabolite biosynthetic gene clusters encoded in Streptomyces genomes. Nat Prod Rep. 38:1330–1361. doi:10.1039/d0np00071j
  • Lekbach Y, Liu T, Li Y, Moradi M, Dou W, Xu D, Smith JA, Lovley DR. 2021. Microbial corrosion of metals: the corrosion microbiome. Adv Microb Physiol. 78:317–390. doi:10.1016/bs.ampbs.2021.01.002
  • Li S, Zhang Y, Du J, Liu J. 2010. Influence of streptomyces on the corrosion behavior of steel A3 in Thiobacillus ferrooxidans Media. Acta Chim Sinica. 68:67–74.
  • Li S-M, Zhang Y-Y, Bai R-B, Liu J-H, Yu M. 2009. Corrosion behavior of steel A3 under the combined effect of Streptomyces and Nocardia sp. Аcta Phys-Chim Sin. 25:921–927.
  • Li X, Dobretsov S, Xu Y, Xiao X, Hung OS, Qian PY. 2006. Antifouling diketopiperazines produced by a deep-sea bacterium, Streptomyces fungicidicus. Biofouling. 22:201–208. doi:10.1080/08927010600780771
  • Lin J, Ballim R. 2012. Biocorrosion control: current strategies and promising alternatives. Afr. J. Biotechnol. 11:15736–15747., doi:10.5897/AJB12.2479
  • Little BJ, Blackwood DJ, Hinks J, Lauro FM, Marsili E, Okamoto A, Rice SA, Wade SA, Flemming H-C. 2020. Microbially influenced corrosion—any progress? Corros Sci. 170:108641. doi:10.1016/j.corsci.2020.108641
  • Liu DY, Li Y, Magarvey NA. 2016. Draft genome sequence of Streptomyces canus ATCC 12647, a producer of telomycin. Genome Announc. 4:e00173-16. doi:10.1128/genomeA.00173-16
  • Liu LL, Wu CH, Qian PY. 2020. Marine natural products as antifouling molecules - a mini-review (2014-2020). Biofouling. 36:1210–1226. doi:10.1080/08927014.2020.1864343
  • Luo C, Chen Y, Liu X, Wang X, Wang X, Li X, Zhao Y, Wei L. 2019. Engineered biosynthesis of cyclic lipopeptide locillomycins in surrogate host Bacillus velezensis FZB42 and derivative strains enhance antibacterial activity. Appl Microbiol Biotechnol. 103:4467–4481. doi:10.1007/s00253-019-09784-1
  • Marchal R. 1999. Rôle des bacteriés sulfurogènes dans la corrosion du fer. Oil Gas Sci Technol - Rev IFP. 54:649–659. doi:10.2516/ogst:1999054
  • Mhlongo JT, Brasil E, De La Torre BG, Albericio F. 2020. Naturally occurring oxazole-containing peptides. Mar Drugs. 18:203. doi:10.3390/md18040203
  • Mohsin H, Sultan U, Joya YF, Ahmed S, Awan MS, Arshad SN. 2016. Development and characterization of cobalt based nanostructured super hydrophobic coating. IOP Conf Ser Mater Sci Eng (Online). 146:6.
  • Mongkolthanaruk W. 2012. Classification of Bacillus beneficial substances related to plants, humans and animals. J Microbiol Biotechnol. 22:1597–1604. doi:10.4014/jmb.1204.04013
  • Nagy N. 2019. Contact angle determination on hydrophilic and superhydrophilic surfaces by using r–θ-type capillary bridges. Langmuir. 35:5202–5212. doi:10.1021/acs.langmuir.9b00442
  • Okon NE. 2010. Fermentation product of Streptomyces griseus (albomycin) as a green inhibitor for the corrosion of zinc in H2SO4. Green Chem Lett Rev. 3:307–314. doi:10.1080/17518253.2010.486771
  • Ornek D, Jayaraman A, Syrett BC, Hsu CH, Mansfeld FB, Wood TK. 2002. Pitting corrosion inhibition of aluminum 2024 by Bacillus biofilms secreting polyaspartate or g-polyglutamate. Appl Microbiol Biotechnol. 58:651–657. doi:10.1007/s00253-002-0942-7
  • Özcengiz G, Öğülür İ. 2015. Biochemistry, genetics and regulation of bacilysin biosynthesis and its significance more than an antibiotic. N Biotechnol. 32:612–619. doi:10.1016/j.nbt.2015.01.006
  • Pacheco da Rosa J, Korenblum E, Franco-Cirigliano MN, Abreu F, Lins U, Soares RM, Macrae A, Seldin L, Coelho RR. 2013. Streptomyces lunalinharesii strain 235 shows the potential to inhibit bacteria involved in biocorrosion processes. Biomed Res Int. 2013:309769. doi:10.1155/2013/309769
  • Pal MK, Lavanya M. 2022. Microbial influenced corrosion: understanding bioadhesion and biofilm formation. J. Bio- Tribo-Corros. 8:76.
  • Pan HQ, Li QL, Hu JC. 2017. The complete genome sequence of Bacillus velezensis 9912D reveals its biocontrol mechanism as a novel commercial biological fungicide agent. J Biotechnol. 247:25–28. doi:10.1016/j.jbiotec.2017.02.022
  • Pérez-Miranda S, Zamudio-Rivera LS, Cisneros-Dévora R, George-Téllez R, Fernández FJ. 2020. Theoretical insight and experimental elucidation of desferrioxamine B from Bacillus sp. AS7 as a green corrosion inhibitor. Corros Eng Sci Technol. 56:93–101. doi:10.1080/1478422X.2020.1824441
  • Pilloni G, Cao F, Ruhmel M, Mishra P. 2022. Proteins identified through predictive metagenomics as potential biomarkers for the detection of microbiologically influenced corrosion. J Ind Microbiol Biotechnol. 49:kuab068.
  • Płaza G, Achal V. 2020. Biosurfactants: eco-friendly and innovative biocides against biocorrosion. IJMS. 21:2152. doi:10.3390/ijms21062152
  • Quinn GA, Maloy AP, Banat MM, Banat IM. 2013. A comparison of effects of broad-spectrum antibiotics and biosurfactants on established bacterial biofilms. Curr Microbiol. 67:614–623. doi:10.1007/s00284-013-0412-8
  • Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, Baek KH. 2019. Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules. 24:1046. doi:10.3390/molecules24061046
  • Rosa JP, Tibúrcio SR, Marques JM, Seldin L, Coelho RR. 2016. Streptomyces lunalinharesii 235 prevents the formation of a sulfate-reducing bacterial biofilm. Braz J Microbiol. 47:603–609. doi:10.1016/j.bjm.2016.04.013
  • Sahl HG, Bierbaum G. 1998. Lantibiotics: biosynthesis and biological activities of uniquely modified peptides from gram-positive bacteria. Annu Rev Microbiol. 52:41–79. doi:10.1146/annurev.micro.52.1.41
  • Silva FJ, Ferreira LC, Campos VP, Cruz-Magalhães V, Barros AF, Andrade JP, Roberts DP, de Souza JT. 2019. Complete genome sequence of the biocontrol agent Bacillus velezensis UFLA258 and its comparison with related species: diversity within the commons. Genome Biol Evol. 11:2818–2823. doi:10.1093/gbe/evz208
  • Simões LC, Gomes IB, Sousa H, Borges A, Simões M. 2022. Biofilm formation under high shear stress increases resilience to chemical and mechanical challenges. Biofouling. 38:1–12. doi:10.1080/08927014.2021.2006189
  • Stepanović S, Vuković D, Dakić I, Savić B, Švabić-Vlahović M. 2000. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 40:175–179. doi:10.1016/S0167-7012(00)00122-6
  • Suneeta P, Eraivan Arutkani Aiyanathan K, Nakkeeran S. 2018. Bacillomycins – the effective molecules in plant disease management. Int J Curr Microbiol App Sci. 7:823–835. doi:10.20546/ijcmas.2018.702.104
  • Tkachuk N, Zelena L, Lukash O, Mazur P. 2021. Microbiological and genetic characteristics of Bacillus velezensis bacillibactin-producing strains and their effect on the sulfate-reducing bacteria biofilms on the poly(ethylene terephthalate) surface. EQ. 32:1–129. doi:10.12775/EQ.2021.019
  • Tkachuk N, Zelena L. 2021a. The impact of bacteria of the genus Bacillus upon the biodamage/biodegradation of some metals and extensively used petroleum-based plastics. CMD. 2:531–553. doi:10.3390/cmd2040028
  • Tkachuk N, Zelena L. 2021b. Some corrosive bacteria isolated from the technogenic soil ecosystem in Chernihiv city (Ukraine). Stud Quat. 38:101–108.
  • Trinh THT, Wang S-L, Nguyen VB, Phan TQ, Doan MD, Tran TPH, Nguyen TH, Le TAH, Ton TQ, Nguyen AD. 2022. Novel nematocidal compounds from shrimp shell wastes valorized by Bacillus velezensis RB.EK7 against black pepper nematodes. Agronomy. 12:2300. doi:10.3390/agronomy12102300
  • Viju N, Punitha SMJ, Satheesh S. 2018. Antifouling properties of bacteria associated with marine oyster Crassostrea sp. Thalassas. 34:471–482. doi:10.1007/s41208-018-0095-9
  • Viju N, Punitha SMJ, Satheesh S. 2020. Antibiofilm activity of symbiotic Bacillus species associated with marine gastropods. Ann Microbiol. 70:11. doi:10.1186/s13213-020-01554-z
  • Volkland H-P, Harms H, Knopf K, Wanner O, Zehnder AJB. 2000. Corrosion inhibition of mild steel by bacteria. Biofouling. 15:287–297. doi:10.1080/08927010009386319
  • Vollenbroich D, Pauli G, Ozel M, Vater J. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol. 63:44–49. doi:10.1128/aem.63.1.44-49.1997
  • Wang L, Yu L, Lin C. 2019. Extraction of protease produced by sea mud bacteria and evaluation of antifouling performance. J Ocean Univ China. 18:1139–1146. doi:10.1007/s11802-019-3843-4
  • Wang Y, Zhang R, Duan J, Shi X, Zhang Y, Guan F, Sand W, Hou B. 2022. Extracellular polymeric substances and biocorrosion/biofouling: recent advances and future perspectives. IJMS. 23:5566. doi:10.3390/ijms23105566
  • Winn M, Casey E, Habimana O, Murphy CD. 2014. Characteristics of Streptomyces griseus biofilms in continuous flow tubular reactors. FEMS Microbiol Lett. 352:157–164. doi:10.1111/1574-6968.12378
  • Yang R, Lei S, Xu X, Jin H, Sun H, Zhao X, Pang B, Shi J. 2020. Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl Microbiol Biotechnol. 104:8077–8087.
  • Yoo Y, Seo D-H, Lee H, Cho E-S, Song N-E, Nam TG, Nam Y-D, Seo M-J. 2019. Inhibitory effect of Bacillus velezensis on biofilm formation by Streptococcus mutans. J Biotechnol. 298:57–63. doi:10.1016/j.jbiotec.2019.04.009
  • Zahed MA, Matinvafa MA, Azari A, Mohajeri L. 2022. Biosurfactant, a green and effective solution for bioremediation of petroleum hydrocarbons in the aquatic environment. Discov Water. 2:5. doi:10.1007/s43832-022-00013-x
  • Zhang YL, Li S, Jiang DH, Kong LC, Zhang PH, Xu JD. 2013. Antifungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. J Agric Food Chem. 61:1521–1524. doi:10.1021/jf305210u
  • Zuo R. 2007. Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol. 76:1245–1253. doi:10.1007/s00253-007-1130-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.