Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 38, 2022 - Issue 9
213
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Autophagy regulation of ATG13 and ATG27 on biofilm formation and antifungal resistance in Candida albicans

, , , , , , , & ORCID Icon show all
Pages 926-939 | Received 11 Feb 2022, Accepted 25 Nov 2022, Published online: 07 Dec 2022

References

  • Bretagne S, Sitbon K, Botterel F, Delliere S, Letscher-Bru V, Chouaki T, Bellanger AP, Bonnal C, Fekkar A, Persat F, French Mycoses Study Group, et al. 2021. COVID-19-associated pulmonary aspergillosis, fungemia, and pneumocystosis in the intensive care unit: a retrospective multicenter observational cohort during the first French pandemic wave. Microbiol Spectr. 9:e0113821. doi:10.1128/Spectrum.01138-21
  • Care RS, Trevethick J, Binley KM, Sudbery PE. 1999. The MET3 promoter: a new tool for Candida albicans molecular genetics. Mol Microbiol. 34:792–798. doi:10.1046/j.1365-2958.1999.01641.x
  • Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. 2001. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 183:5385–5394. doi:10.1128/JB.183.18.5385-5394.2001
  • Chen Y, Azad MB, Gibson SB. 2009. Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ. 16:1040–1052. doi:10.1038/cdd.2009.49
  • Chen S, Xia J, Li C, Zuo L, Wei X. 2018. The possible molecular mechanisms of farnesol on the antifungal resistance of C. albicans biofilms: the regulation of CYR1 and PDE2. BMC Microbiol. 18:203–30509171. doi:10.1186/s12866-018-1344-z
  • Dadar M, Tiwari R, Karthik K, Chakraborty S, Shahali Y, Dhama K. 2018. Candida albicans - biology, molecular characterization, pathogenicity, and advances in diagnosis and control - an update. Microb Pathog. 117:128–138. doi:10.1016/j.micpath.2018.02.028
  • Gaudet P, Livstone MS, Lewis SE, Thomas PD. 2011. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform 12:449–62.
  • Gulati M, Nobile CJ. 2016. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 18:310–321. doi:10.1016/j.micinf.2016.01.002
  • Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. 2017. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45:D353–d361. doi:10.1093/nar/gkw1092
  • Kuhn DM, George T, Chandra J, Mukherjee PK, Ghannoum MA. 2002. Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins. Antimicrob Agents Chemother. 46:1773–1780. doi:10.1128/AAC.46.6.1773-1780.2002
  • Lee Y, Puumala E, Robbins N, Cowen LE. 2021. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev. 121:3390–3411. doi:10.1021/acs.chemrev.0c00199
  • Li L, Tan J, Miao Y, Lei P, Zhang Q. 2015. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 35:615–621. doi:10.1007/s10571-015-0166-x
  • Liu L, Sakakibara K, Chen Q, Okamoto K. 2014. Receptor-mediated mitophagy in yeast and mammalian systems. Cell Res. 24:787–795. doi:10.1038/cr.2014.75
  • Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15:550–25516281. doi:10.1186/s13059-014-0550-8
  • Lu Y, Su C, Liu H. 2014. Candida albicans hyphal initiation and elongation. Trends Microbiol. 22:707–714. doi:10.1016/j.tim.2014.09.001
  • Moser D, Biere K, Han B, Hoerl M, Schelling G, Choukér A, Woehrle T. 2021. COVID-19 impairs immune response to Candida albicans. Front Immunol. 12:640644. doi:10.3389/fimmu.2021.640644
  • Nair U, Thumm M, Klionsky DJ, Krick R. 2011. GFP-Atg8 protease protection as a tool to monitor autophagosome biogenesis. Autophagy. 7:1546–1550. doi:10.4161/auto.7.12.18424
  • Noble SM, Johnson AD. 2005. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell. 4:298–309. doi:10.1128/EC.4.2.298-309.2005
  • Nothwehr SF, Bryant NJ, Stevens TH. 1996. The newly identified yeast GRD genes are required for retention of late-Golgi membrane proteins. Mol Cell Biol. 16:2700–2707. doi:10.1128/MCB.16.6.2700
  • Parzych KR, Ariosa A, Mari M, Klionsky DJ. 2018. A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell. 29:1089–1099. doi:10.1091/mbc.E17-08-0516
  • Pereira R, Dos Santos Fontenelle RO, de Brito EHS, de Morais SM. 2021. Biofilm of Candida albicans: formation, regulation, and resistance. J Appl Microbiol. 131:11–22. doi:10.1111/jam.14949
  • Poulain D. 2015. Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol. 41:208–217. doi:10.3109/1040841X.2013.813904
  • Priya A, Pandian SK. 2020. Piperine impedes biofilm formation and hyphal morphogenesis of Candida albicans. Front Microbiol. 11:756–32477284. doi:10.3389/fmicb.2020.00756
  • Qiu Z, Wu X, Gao W, Zhang J, Huang C. 2018. High temperature induced disruption of the cell wall integrity and structure in Pleurotus ostreatus mycelia. Appl Microbiol Biotechnol. 102:6627–6636. doi:10.1007/s00253-018-9090-6
  • Reuss O, Vik A, Kolter R, Morschhäuser J. 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene. 341:119–127. doi:10.1016/j.gene.2004.06.021
  • Segarra VA, Boettner DR, Lemmon SK. 2015. Atg27 tyrosine sorting motif is important for its trafficking and Atg9 localization. Traffic. 16:365–378. doi:10.1111/tra.12253
  • Shimamura S, Miyazaki T, Tashiro M, Takazono T, Saijo T, Yamamoto K, Imamura Y, Izumikawa K, Yanagihara K, Kohno S, et al. 2019. Autophagy-inducing factor Atg1 is required for virulence in the pathogenic fungus Candida glabrata. Front Microbiol. 10:27–30761093. doi:10.3389/fmicb.2019.00027
  • Singh SD, Robbins N, Zaas AK, Schell WA, Perfect JR, Cowen LE. 2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog. 5:e1000532. doi:10.1371/journal.ppat.1000532
  • Soll DR, Daniels KJ. 2016. Plasticity of Candida albicans biofilms. Microbiol Mol Biol Rev. 80:565–595. doi:10.1128/MMBR.00068-15
  • Sora V, Kumar M, Maiani E, Lambrughi M, Tiberti M, Papaleo E. 2020. Structure and dynamics in the ATG8 family from experimental to computational techniques. Front Cell Dev Biol. 8:420–32587856. doi:10.3389/fcell.2020.00420
  • Suzuki SW, Yamamoto H, Oikawa Y, Kondo-Kakuta C, Kimura Y, Hirano H, Ohsumi Y. 2015. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc Natl Acad Sci U S A. 112:3350–3355. doi:10.1073/pnas.1421092112
  • Thome MP, Filippi-Chiela EC, Villodre ES, Migliavaca CB, Onzi GR, Felipe KB, Lenz G. 2016. Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy. J Cell Sci 129:4622–4632.
  • Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. 2019. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 52:1–6. doi:10.1016/j.mib.2019.04.001
  • Xu QR, Yan L, Lv QZ, Zhou M, Sui X, Cao YB, Jiang YY. 2014. Molecular genetic techniques for gene manipulation in Candida albicans. Virulence. 5:507–520. doi:10.4161/viru.28893
  • Yoshii SR, Mizushima N. 2017. Monitoring and measuring autophagy. IJMS. 18:1865. doi:10.3390/ijms18091865
  • Yu Q, Jia C, Dong Y, Zhang B, Xiao C, Chen Y, Wang Y, Li X, Wang L, Zhang B, et al. 2015. Candida albicans autophagy, no longer a bystander: its role in tolerance to ER stress-related antifungal drugs. Fungal Genet Biol. 81:238–249. doi:10.1016/j.fgb.2015.02.008
  • Zhang Y, Xie Y, Liu W, Deng W, Peng D, Wang C, Xu H, Ruan C, Deng Y, Guo Y, et al. 2020. DeepPhagy: a deep learning framework for quantitatively measuring autophagy activity in Saccharomyces cerevisiae. Autophagy. 16:626–640. doi:10.1080/15548627.2019.1632622

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.