Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 2
193
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In vitro effect of the iron chelator deferiprone on the antimicrobial susceptibility and biofilms of Burkholderia pseudomallei

ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 135-144 | Received 18 Oct 2022, Accepted 12 Mar 2023, Published online: 04 Apr 2023

References

  • Ammendola S, Secli V, Pacello F, Bortolami M, Pandolfi F, Messore A, Di Santo R, Scipione L, Battistoni A. 2021. Salmonella Typhimurium and Pseudomonas aeruginosa respond differently to the Fe chelator deferiprone and to some novel deferiprone derivatives. Int J Mol Sci. 22:10217. doi:10.3390/ijms221910217
  • Bandeira TJPG, Moreira CA, Brilhante RSN, Castelo-Branco DSCM, Neto MP, Cordeiro RA, Rodrigues TJS, Rocha MFG, Sidrim JJC. 2013. In vitro activities of amoxicillin-clavulanate, doxycycline, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole against biofilm of Brazilian strains of Burkholderia pseudomallei. Antimicrob Agents Chemother. 57:5771–5773. doi:10.1128/AAC.00721-1310.1128/AAC.00721-13
  • Benoit TJ, Blaney DD, Doker TJ, Gee JE, Elrod MG, Rolim DB, Inglis TJJ, Hoffmaster AR, Bower WA, Walke, HT, T. 2015. A review of melioidosis cases in the Americas. Am J Trop Med Hyg. 93:1134–1139. doi:10.4269/ajtmh.15-0405
  • Berlutti F, Morea C, Battistoni A, Sarli S, Cipriani P, Superti F, Ammendolia MG, Valenti P. 2005. Iron availability influences aggregation, biofilm, adhesion, and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmacol. 18:661–670. doi:10.1177/039463200501800407
  • Brilhante RSN, Bandeira TJPG, Cordeiro RA, Grangeiro TB, Lima RAC, Ribeiro JF, Castelo-Branco DSCM, Rodrigues JLN, Coelho ICB, Magalhães FG, et al. 2012a. Clinical-epidemiological features of 13 cases of melioidosis in Brazil. J Clin Microbiol. 50:3349–3352. doi:10.1128/JCM.01577-12
  • Brilhante RSN, Costa AC, Pereira VS, Fernandes MR, Oliveira JS, Rodrigues AM, Camargo ZP, Pereira-Neto WA, Sidrim JJC, Rocha MFG. 2020. Antifungal activity of deferiprone and EDTA against Sporothrix spp.: effect on planktonic growth and biofilm formation. Med Mycol. 59:537–544. doi:10.1093/mmy/myaa073
  • Brilhante RSN, Valente LGA, Rocha MFG, Bandeira TJPG, Cordeiro RA, Lima RAC, Leite JJG, Ribeiro JF, Pereira JF, Castelo-Branco DSCM, et al. 2012b. Sesquiterpene farnesol contributes to increased susceptibility to β-lactams in strains of Burkholderia pseudomallei. Antimicrob Agents Chemother. 56:2198–2200. doi:10.1128/AAC.05885-1110.1128/AAC.05885-1
  • Butt A, Halliday N, Williams P, Atkins HS, Bancroft GJ, Titball RW. 2016. Burkohlderia pseudomallei kynB plays a role in AQ production, biofilm formation, bacterial swarming, and persistence. Res Microbiol. 167:159–167. doi:10.1016/j.resmic.2015.11.002
  • Castelo-Branco DSCM, Riello GB, Vasconcelos DC, Guedes GMM, Serpa R, Bandeira TJPG, Monteiro AJ, Cordeiro RA, Rocha MFG, Sidrim JJC, et al. 2016. Farnesol increases the susceptibility of Burkholderia pseudomallei biofilm to antimicrobials used to treat melioidosis. J Appl Microbiol. 120:600–606. doi:10.1111/jam.2016.120.issue-310.1111/jam.2016.120.issue-3
  • Chan GCF, Chan S, Ho PL, Ha SY. 2009. Effects of chelators (deferoxamine, deferiprone and deferasirox) on the growth of Klebsiella pneumoniae and Aeromonas hydrophila isolated from transfusion-dependent thalassemia patients. Hemoglobin. 33:352–360. doi:10.3109/03630260903211888
  • Cheng AC, Dance DAB, Currie BJ. 2005. Bioterrorism, glanders and melioidosis. Euro Surveill. 10: e 1–2.
  • CLSI. 2018. Performance standards for antimicrobial susceptibility testing: standards. CLSI document M100-S28. Wayne (PA): Clinical and Laboratory Standards Institute.
  • Coraça-Huber DC, Dichtl S, Steixner S, Nogler M, Weiss G. 2018. Iron chelation destabilizes bacterial biofilms and potentiates the antimicrobial activity of antibiotics against coagulase-negative Staphylococci. Pathog Dis. 76:1–8. doi:10.1093/femspd/fty052
  • Duangurai T, Indrawattana N, Pumirat P. 2018. Burkholderia pseudomallei adaptation for survival in stressful conditions. Biomed Res Int. 2018:3039106. doi:10.1155/2018/3039106
  • Ezraty B, Barras F. 2016. The ‘liaisons dangereuses’ between iron and antibiotics. FEMS Microbiol Rev. 40:418–435. doi:10.1093/femsre/fuw004
  • Faure ME, Cilibrizzi A, Abbate V, Bruce KD, Hider RC. 2021. Effect of iron chelation on anti-pseudomonal activity of doxycycline. Int J Antimicrob Agents. 58:106438. doi:10.1016/j.ijantimicag.2021.106438
  • Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8:623–633. doi:10.1038/nrmicro2415
  • Gerhardy B, Simpson G. 2013. Melioidosis and idiopathic pulmonar hemosiderosis: a cast-iron case. Respirol Case Rep. 1:46–47. doi:10.1002/rcr2.25
  • Gokarn K, Pal RB. 2018. Activity of siderophores against drug-resistant Gram-positive and Gram-negative bacteria. Infect Drug Resist. 11:61–75. doi:10.2147/IDR.S148602
  • Grenier D, Huot MP, Mayrand D. 2000. Iron-chelating activity of tetracyclines and its impact on the susceptibility of Actinobacillus actinomycetemcomitans to these antibiotics. Antimicrob Agents Chemother. 44:763–766. doi:10.1128/AAC.44.3.763-766.2000
  • Harrison F, Buckling A. 2009. Siderophore production and biofilm formation as linked social traits. ISME J. 3:632–634. doi:10.1038/ismej.2009.9
  • Hengzhuang W, Ciofu O, Yang L, Wu H, Song Z, Oliver A, Hoiby N. 2013. High β-lactamase levels change the pharmacodynamics of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 57:196–204. doi:10.1128/AAC.01393-12
  • Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. 2010. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 35:322–332. doi:10.1016/j.ijantimicag.2009.12.011
  • Houshmandyar S, Eggleston IM, Bolhuis A. 2021. Biofilm-specific uptake of a 4-pyridone-based iron chelator by Pseudomonas aeruginosa. Biometals. 34:315–328. doi:10.1007/s10534-020-00281-x
  • Huang MH, Wu H, Zhou XJ, Cao QF, Wang XM. 2021. Evaluation of the antibacterial activity of Piperacillin–tazobactam against Burkholderia pseudomallei in vitro. Research Square. doi:10.21203/rs.3.rs-322273/v1
  • Ibrahim AS, Edwards JE, Jr, Fu Y, Spellberg B. 2006. Deferiprone iron chelation as a novel therapy for experimental mucormycosis. J Antimicrob Chemother. 58:1070–1073. doi:10.1093/jac/dkl350
  • Kamjumphol W, Chareonsudjai S, Chareonsudjai P, Wongratanacheewin S, Taweechaisupapong S. 2013. Environmental factors affecting Burkholderia pseudomallei biofilm formation. Southeast Asian J Trop Med Public Health. 44:72–81. PMID23682440.
  • Kang D, Kirienko NV. 2018. Interdependence between iron acquisition and biofilm formation in Pseudomonas aeruginosa. J Microbiol. 56:449–457. doi:10.1007/s12275-018-8114-3
  • Khosravi Y, Vellasamy KM, Mariappan V, Ng S-L, Vadivelu J. 2014. Antimicrobial susceptibility and genetic characterisation of Burkholderia pseudomallei isolated from Malaysian patients. Sci. World J. 2014:1–9. doi:10.1155/2014/132971.
  • Kim CM, Shin SH. 2009. Effect of iron-chelator deferiprone on the in vitro growth of staphylococci. J Korean Med Sci. 24:289–295. doi:10.3346/jkms.2009.24.2.289
  • Lesic B, Foulon J, Carniel E. 2002. Comparison of the effects of deferiprone versus deferoxamine on growth and virulence of Yersinia enterocolitica. Antimicrob Agents Chemother. 46:1741–1745. doi:10.1128/AAC.46.6.1741-1745.2002
  • Ma L, Gao Y, Maresso AW. 2015. Escherichia coli free radical-base killing mechanism driven by a unique combination of iron restriction and certain antibiotics. J Bacteriol. 197:3708–3719. doi:10.1128/JB.00758-15
  • Nazik H, Penner JC, Ferreira JÁ, Haagensen JAJ, Cohen K, Spormann AM, Martinez M, Chen V, Hsu JL, Clemons KV, et al. 2015. Effects of iron chelators on the formation and development of Aspergillus fumigatus biofilm. Antimicrob Agents Chemother. 59:6514–6520. doi:10.1128/AAC.01684-15
  • Parsek MR, Singh PK. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol. 57:677–701. doi:10.1146/annurev.micro.57.030502.090720
  • Pibalpakdee P, Wongratanacheewin S, Taweechaisupapong S, Niumsup PR. 2012. Diffusion and activity of antibiotics against Burkholderia pseudomallei biofilms. Int J Antimicrob Agents. 39:356–359. doi:10.1016/j.ijantimicag.2011.12.010
  • Ramalingam K, Lee V. 2019. Synergistic effects of nanoemulsion and deferiprone (1,2 dimethyl-3-hydroxypyrid-4-one) on multi-drug resistant Acinetobacter baumannii. Nano BioMed ENG. 11:226–237. doi:10.5101/nbe.v11i3.p226-237
  • Richter K, Thomas N, Zhang G, Prestidge CA, Coenye T, Wormald PJ, Vreugde S. 2017. Deferiprone and gallium-protoporphyrin have the capacity to potentiate the activity of antibiotics in Staphylococcus aureus small colony variants. Front Cell Infect Microbiol. 7:280. doi:10.3389/fcimb.2017.00280
  • Saha R, Saha N, Donofrio RS, Bestervelt LL. 2013. Microbial siderophores: a mini review. J Basic Microbiol. 53:303–317. doi:10.1002/jobm.201100552
  • Sawasdidoln C, Taweechaisupapong S, Sermswan RW, Tattawasart U, Tungpradabkul S, Wongratanacheewin S. 2010. Growing Burkholderia pseudomallei in biofilm stimulating conditions significantly induces antimicrobial resistance. PLoS One. 5:e9196. doi:10.1371/journal.pone.0009196
  • Scott C, Arora G, Dickson K, Lehmann C. 2021. Iron chelation in local infection. Molecules. 26:189. doi:10.3390/molecules26010189
  • Sidrim JJC, Ocadaque CJ, Amando BR, Guedes GMM, Costa CL, Brilhante RSN, Cordeiro RA, Rocha MFG, Castelo-Branco DSCM. 2020. Rhamnolipid enhances Burkholderia pseudomallei biofilm susceptibility, disassembly and production of virulence factors. Future Microbiol. 15:1109–1121. doi:10.2217/fmb-2020-0010
  • Sidrim JJC, Vasconcelos DC, Riello GB, Guedes GMM, Serpa R, Bandeira TJPG, Monteiro AJ, Cordeiro RA, Castelo-Branco DSCM, Rocha MFG, et al. 2017. Promethazine improves antibiotic efficacy and disrupts biofilms of Burkholderia pseudomallei. Biofouling. 33:88–97. doi:10.1080/08927014.2016.1262846
  • Singh PK. 2004. Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals. 17:267–270. doi:10.1023/b:biom.0000027703.77456.27
  • Smith DJ, Lamont IL, Anderson GJ, Reid DW. 2013. Targeting iron uptake to control Pseudomonas aeruginosa infections in cystic fibrosis. Eur Respir J. 42:1723–1736. doi:10.1183/09031936.00124012
  • Tajudin SM, Besari AM, Ismail N, Hassan SA, Zaidah AR. 2019. Melioidosis presented as severe acute cholangitis: A rare presentation. Int J Case Rep Images. 10:101049Z01ST2019. doi:10.5348/101049Z01ST2019CR
  • Thompson MG, Corey BW, Si Y, Craft DW, Zurawski DV. 2012. Antibacterial activities of iron chelators against common nosocomial pathogens. Antimicrob Agents Chemother. 56:5419–5421. doi:10.1128/AAC.01197-12
  • Visca P, Bonchi C, Minandri F, Frangipani E, Imperi F. 2013. The dual personality of iron chelators: growth inhibitors or promoters? Antimicrob Agents Chemother. 57:2432–2433. doi:10.1128/AAC.02529-12
  • Wiersinga WJ, Van Der Poll T, White NJ, Day NP, Peacock SJ. 2006. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei. Nat Rev Microbiol. 4:272–282. doi:10.1038/nrmicro1385
  • Wiersinga WJ, Virk HS, Torres AG, Currie BJ, Peacock SJ, Dance DAB, Limmathurotsakul D. 2018. Melioidosis. Nat Rev Dis Primers. 4:17107. doi:10.1038/nrdp.2017.107
  • Yu S, Wei Q, Zhao T, Guo Y, Ma LZ. 2016. A survival strategy for Pseudomonas aeruginosa that uses exopolysaccharides to sequester and store iron to stimulate Psl-dependent biofilm formation. Appl Environ Microbiol. 82:6403–6413. doi:10.1128/AEM.01307-16
  • Zhou YJ, Zhang MX, Hider RC, Zhou T. 2014. In vitro antimicrobial activity of hydroxypyridinone hexadentate-based dendrimeric chelators alone and in combination with norfloxacin. FEMS Microbiol Lett. 355:124–130. doi:10.1111/1574-6968.12465

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.