Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 5
198
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An antimicrobial metabolite n- hexadecenoic acid from marine sponge-associated bacteria Bacillus subtilis effectively inhibited biofilm forming multidrug-resistant P. aeruginosa

, , ORCID Icon, & ORCID Icon
Pages 502-515 | Received 10 Apr 2021, Accepted 27 Jun 2023, Published online: 24 Jul 2023

References

  • Papagianni M. 2003. Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnol Adv. 21:465–499. doi:10.1016/s0734-9750(03)00077-6.
  • Bauer AW, Kirby WM, Sherris JC, Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 45:493–496. doi:10.1093/ajcp/45.4_ts.493.
  • Bibi F, Faheem M, I Azhar E, Yasir M, A Alvi S, A Kamal M, Ullah I, I Naseer M. 2017. Bacteria from marine sponges: a source of new drugs. Curr Drug Metab. 18:11–15. doi:10.2174/1389200217666161013090610.
  • [CLSI] Clinical and Laboratory Standards Institute. 2012. Methods for dilution antimicrobial susceptibility tests for Bacteria that grow aerobically; Approved standard. – 9th Edition. CLSI document M07-A09/Wayne, PA: CLSI.
  • Costerton JW, Stewart PS, Greenberg EP. 1999. Bacterial biofilms: a common cause of persistent infections. Science. 284:1318–1322. doi:10.1126/science.284.5418.1318.
  • Desbois AP, Smith VJ. 2010. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 85:1629–1642. doi:10.1007/s00253-009-2355-3.
  • Diomandé SE, Nguyen-The C, Guinebretière M-H, Broussolle V, Brillard J. 2015. Role of fatty acids in Bacillus environmental adaptation. Front Microbiol. 6:813. doi:10.3389/fmicb.2015.00813.
  • Enticknap JJ, Kelly M, Peraud O, Hill RT. 2006. Characterization of a culturable Alphaproteobacterial symbiont common to many marine sponges and evidence for vertical transmission via sponge larvae. Appl Environ Microbiol. 72:3724–3732. doi:10.1128/AEM.72.5.3724-3732.2006.
  • Fernebro J. 2011. Fighting bacterial infections-future treatment options. Drug Resist Updat. 14:125–139. doi:10.1016/j.drup.2011.02.001.
  • Gandhimathi R, Arunkumar M, Selvin J, Thangavelu T, Sivaramakrishnan S, Kiran GS, Shanmughapriya S, Natarajaseenivasan K. 2008. Antimicrobial potential of sponge associated marine actinomycetes. Journal de Mycologie Médicale. 18:16–22. doi:10.1016/j.mycmed.2007.11.001.
  • Gandhimathi R, Kiran GS, Hema TA, Selvin J, Raviji TR, Shanmughapriya S. 2009. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10. Bioprocess Biosyst Eng. 32:825–835. doi:10.1007/s00449-009-0309-x.
  • Hallsworth JE, Magan N. 1997. A rapid HPLC protocol for detection of polyols and trehalose. J Microbiol Methods. 29:7–13. doi:10.1016/S0167-7012(97)00976-7.
  • Hassan A, Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. 2011. Evaluation of different detection methods of biofilm formation in the clinical isolates. The Brazilian Journal of Infectious Diseases. 15:305–311. doi:10.1016/S1413-8670(11)70197-0.
  • Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. 2000. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 146:2395–2407. doi:10.1099/00221287-146-10-2395.
  • Hirsch EB, Tam VH. 2010. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev Pharmacoecon Outcomes Res. 10:441–451. doi:10.1586/erp.10.49.
  • Inoue T, Shingaki R, Fukui K. 2008. Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiol Lett. 281:81–86. doi:10.1111/j.1574-6968.2008.01089.x.
  • Janda JM, Atang-Nomo S, Bottone EJ, Desmond EP. 1980. Correlation of proteolytic activity of Pseudomonas aeruginosa with site of isolation. J Clin Microbiol. 12:626–628. doi:10.1128/jcm.12.4.626-628.1980.
  • Janßen HJ, Steinbüchel A. 2014. Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels. 7:7. doi:10.1186/1754-6834-7-7.
  • Jiang X, Zhang Z, Li M, Zhou D, Ruan F, Lu Y. 2006. Detection of extended-spectrum β-lactamases in clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 50:2990–2995. doi:10.1128/AAC.01511-05.
  • Kiran GS, Jackson SA, Priyadharsini S, Dobson ADW, Selvin J. 2017. Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus. Sci Rep. 7:9167. doi:10.1038/s41598-017-08816-y.
  • Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Suárez LEC, Arasu MV, Choi KC, Selvin J, Al-Dhabi NA. 2014. Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microb Cell Fact. 13:114. doi:10.1186/s12934-014-0114-3.
  • Kiran GS, Priyadharshini S, Dobson ADW, Gnanamani E, Selvin J. 2016. Degradation intermediates of polyhydroxy butyrate inhibits phenotypic expression of virulence factors and biofilm formation in luminescent Vibrio sp. PUGSK8. NPJ Biofilms Microbiomes. 2:16002. doi:10.1038/npjbiofilms.2016.2.
  • Kiran GS, Priyadharsini S, Sajayan A, Ravindran A, Selvin J. 2018. An antibiotic agent pyrrolo[1,2-: a] pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 8:17837–17846. doi:10.1039/C8RA00820E.
  • Kiran GS, Sabarathnam B, Selvin J. 2010. Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol. 59:432–438. doi:10.1111/j.1574-695X.2010.00698.x.
  • Kumar P, Lee JH, Beyenal H, Lee J. 2020. Fatty Acids as Antibiofilm and Antivirulence Agents. Trends Microbiol. 28:753–768. doi:10.1016/j.tim.2020.03.014.
  • Laport MS, Santos OCS, Muricy G. 2009. Marine sponges: potential sources of new antimicrobial drugs. Curr Pharm Biotechnol. 10:86–105. doi:10.2174/138920109787048625.
  • Levison ME. 2004. Pharmacodynamics of antimicrobial drugs. Infect Dis Clin North Am. 18:451–465, vii. doi:10.1016/j.idc.2004.04.012.
  • Lopes SP, Ceri H, Azevedo NF, Pereira MO. 2012. Antibiotic resistance of mixed biofilms in cystic fibrosis: impact of emerging microorganisms on treatment of infection. Int J Antimicrob Agents. 40:260–263. doi:10.1016/j.ijantimicag.2012.04.020.
  • Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, et al. 2012. Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 18:268–281. doi:10.1111/j.1469-0691.2011.03570.x.
  • Masadeh MM, Alzoubi KH, Ahmed WS, Magaji AS. 2019. In vitro comparison of antibacterial and antibiofilm activities of selected fluoroquinolones against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Pathogens. 8:12. doi:10.3390/pathogens8010012.
  • Mearns‐Spragg A, Bregu M, Boyd KG, Burgess JG. 1998. Cross‐species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Lett Appl Microbiol. 27:142–146. doi:10.1046/j.1472-765x.1998.00416.x.
  • Mensa J, Barberán J, Soriano A, Llinares P, Marco F, Cantón R, Bou G, del Castillo JG, Maseda E, Azanza JR. 2018. Antibiotic selection in the treatment of acute invasive infections by Pseudomonas aeruginosa: guidelines by the Spanish society of chemotherapy. Revista Española de Quimioterapia. 31:78.
  • Mesaros N, Nordmann P, Plésiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A, et al. 2007. Pseudomonas aeruginosa: resistance and therapeutic options at the turn of the new millennium. Clin Microbiol Infect. 13:560–578. doi:10.1111/j.1469-0691.2007.01681.x.
  • Miller RD, Brown KE, Morse SA. 1977. Inhibitory action of fatty acids on the growth of Neisseria gonorrhoeae. Infect Immun. 17:303–312. doi:10.1128/iai.17.2.303-312.1977.
  • Mogana R, Adhikari A, Tzar MN, Ramliza R, Wiart C. 2020. Antibacterial activities of the extracts, fractions and isolated compounds from Canarium patentinervium Miq. against bacterial clinical isolates. BMC Complement Med Ther. 20:1–11. doi:10.1186/s12906-020-2837-5.
  • Obritsch MD, Fish DN, MacLaren R, Jung R. 2005. Nosocomial infections due to multidrug‐resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy: the Journal of Human Pharmacology and Drug Therapy. 25:1353–1364. doi:10.1592/phco.2005.25.10.1353.
  • Otsu N. 1979. A threshold selection method from gray-level histograms. IEEE Trans Syst, Man, Cybern. 9:62–66. doi:10.1109/TSMC.1979.4310076.
  • Pabel CT, Vater J, Wilde C, Franke P, Hofemeister J, Adler B, Bringmann G, Hacker J, Hentschel U. 2003. Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol (NY). 5:424–434. doi:10.1007/s10126-002-0088-8.
  • Prasath KG, Tharani H, Kumar MS, Pandian SK. 2020. Palmitic acid inhibits the virulence factors of Candida tropicalis: biofilms, Cell Surface Hydrophobicity, Ergosterol Biosynthesis, and Enzymatic Activity. Front Microbiol. 11: doi:10.3389/fmicb.2020.00864.
  • Santhakumari S, Nilofernisha NM, Ponraj JG, Pandian SK, Ravi AV. 2017. In vitro and in vivo exploration of palmitic acid from Synechococcus elongatus as an antibiofilm agent on the survival of Artemia franciscana against virulent vibrios. J Invertebr Pathol. 150:21–31. doi:10.1016/j.jip.2017.09.001.
  • Santhi LS, Prasad Talluri V, Nagendra SY, Krishna R. 2017. Bioactive compounds from marine sponge associates: Antibiotics from Bacillus sp. Nat Prod Chem Res. 05:4. doi:10.4172/2329-6836.1000266.
  • Selvin J, Gandhimathi R, Kiran GS, Priya SS, Ravji TR, Hema TA. 2009. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria. Helgol Mar Res. 63:239–247. doi:10.1007/s10152-009-0153-z.
  • Selvin J, Lipton AP. 2004. Dendrilla nigra, a marine sponge, as potential source of antibacterial substances for managing shrimp diseases. Aquaculture. 236:277–283. doi:10.1016/j.aquaculture.2004.01.021.
  • Shah DA, Wasim S, Abdullah FE. 2015. Antibiotic resistance pattern of Pseudomonas aeruginosa isolated from urine samples of Urinary Tract Infections patients in Karachi, Pakistan. Pak J Med Sci. 31:341.
  • Sharma G, Dang S, Gupta S, Gabrani R. 2018. Antibacterial activity, cytotoxicity, and the mechanism of action of bacteriocin from Bacillus subtilis GAS101. Med Princ Pract. 27:186–192. doi:10.1159/000487306.
  • Soares A, Alexandre K, Lamoureux F, Lemée L, Caron F, Pestel-Caron M, Etienne M. 2019. Efficacy of a ciprofloxacin/amikacin combination against planktonic and biofilm cultures of susceptible and low-level resistant Pseudomonas aeruginosa. J Antimicrob Chemother. 74:3252–3259. doi:10.1093/jac/dkz355.
  • Stehling EG, Silveira WDd, Leite DdS 2008. Study of biological characteristics of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis and from patients with extra-pulmonary infections. Braz J Infect Dis. 12:86–88. doi:10.1590/s1413-86702008000100018.
  • Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol. 56:845–857. doi:10.1111/j.1365-2958.2005.04587.x.
  • Strateva T, Yordanov D. 2009. Pseudomonas aeruginosa-A phenomenon of bacterial resistance. J Med Microbiol. 58:1133–1148. doi:10.1099/jmm.0.009142-0.
  • Tetz GV, Artemenko NK, Tetz VV. 2009. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother. 53:1204–1209. doi:10.1128/AAC.00471-08.
  • Thomas BT, Adeleke AJ, Raheem-Ademola RR, Kolawole R, Musa OS. 2012. Efficiency of some disinfectants on bacterial wound pathogens. Life Sci J. 9:752–755.
  • Tsakona S, Papadaki A, Kopsahelis N, Kachrimanidou V, Papanikolaou S, Koutinas A. 2019. Development of a circular oriented bioprocess for microbial oil production using diversified mixed confectionery side-streams. Foods. 8(8):300. doi:10.3390/foods8080300.
  • Urdaci MC, Pinchuk I. 2004. Antimicrobial activity of Bacillus probiotics. Bacterial spore formers–Probiotics and emerging applications Norfolk, UK: horizon Bioscience.:171–182.
  • Vijayanand S, Hemapriya J, Selvin J, Kiran S. 2012. Operational stability and reusability of Halobacterium sp. JS 1 Cells Immobilized in Various Matrices for Haloalkaliphilic Protease Production. 3:1–6.
  • Wenderska IB, Chong M, McNulty J, Wright GD, Burrows LL. 2011. Palmitoyl‐DL‐carnitine is a multitarget inhibitor of Pseudomonas aeruginosa biofilm development. Chembiochem. 12:2759–2766. doi:10.1002/cbic.201100500.
  • Yff BTS, Lindsey KL, Taylor MB, Erasmus DG, Jäger AK. 2002. The pharmacological screening of Pentanisia prunelloides and the isolation of the antibacterial compound palmitic acid. J Ethnopharmacol. 79:101–107. doi:10.1016/s0378-8741(01)00380-4.
  • Yoon BK, Jackman JA, Valle-González ER, Cho N-J. 2018. Antibacterial free fatty acids and monoglycerides: biological activities, experimental testing, and therapeutic applications. IJMS. 19:1114. doi:10.3390/ijms19041114.
  • Young R, Gill JJ. 2015. MICROBIOLOGY. Phage therapy redux–What is to be done? Science. 350:1163–1164. doi:10.1126/science.aad6791.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.