Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 6
3,904
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Marine biofouling and the role of biocidal coatings in balancing environmental impacts

&
Pages 661-681 | Received 19 May 2023, Accepted 07 Aug 2023, Published online: 17 Aug 2023

References

  • Abdallah R, Bertelle C, Duvallet C, Besancenot J, Gilletta F. 2022. Blockchain potentials in the maritime sector: a survey. Proceedings of the ICR’22 International Conference on Innovations in Computing Research; p. 293–309.
  • AkzoNobel. 2023. Product catalogue. [access 2023 Jul 13]. Available from: https://www.international-marine.com/product/intersleek-1001.
  • Aldred N, Clare AS. 2008. The adhesive strategies of cyprids and development of barnacle-resistant marine coatings. Biofouling. 24:351–363. doi: 10.1080/08927010802256117.
  • Almeida E, Diamantino TC, de Sousa O. 2007. Marine paints: the particular case of antifouling paints. Prog Org Coat. 59:2–20. doi: 10.1016/j.porgcoat.2007.01.017.
  • Amara I, Miled W, Slama RB, Ladhari N. 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ Toxicol Pharmacol. 57:115–130. doi: 10.1016/j.etap.2017.12.001.
  • Andersson Trojer M, Nordstierna L, Bergek J, Blanck H, Holmberg K, Nydén M. 2015. Use of microcapsules as controlled release devices for coatings. Adv Colloid Interface Sci. 222:18–43. doi: 10.1016/j.cis.2014.06.003.
  • Antunes J, Leão P, Vasconcelos V. 2019. Marine biofilms: diversity of communities and of chemical cues. Environ Microbiol Rep. 11:287–305. doi: 10.1111/1758-2229.12694.
  • Baier RE. 2006. Surface behaviour of biomaterials: the theta surface for biocompatibility. J Mater Sci Mater Med. 17:1057–1062. doi: 10.1007/s10856-006-0444-8.
  • Bandara N, Zeng H, Wu J. 2013. Marine mussel adhesion: biochemistry, mechanisms, and biomimetics. J Adhes Sci Technol. 27:2139–2162. doi: 10.1080/01694243.2012.697703.
  • Belkin IM. 2009. Rapid warming of large marine ecosystems. Prog Oceanogr. 81:207–213. doi: 10.1016/j.pocean.2009.04.011.
  • Benda J, Stafslien S, Vanderwal L, Finlay JA, Clare AS, Webster DC. 2021. Surface modifying amphiphilic additives and their effect on the fouling-release performance of siloxane-polyurethane coatings. Biofouling. 37:309–326. doi: 10.1080/08927014.2021.1901891.
  • Berne C, Ma X, Licata NA, Neves BRA, Setayeshgar S, Brun YV, Dragnea B. 2013. Physiochemical properties of Caulobacter Crescentus holdfast: a localized bacterial adhesive. J Phys Chem B. 117:10492–10503. doi: 10.1021/jp405802e.
  • BIMCO. 2019. Biofouling management survey. [access 2023 Jul 13]. Available from: https://www.bimco.org/-/media/bimco/news-and-trends/news/environment-protection/2019/ppr-7-7-1-biofouling-management-survey-bimco.ashx?rev=92d6f6c4d42d43be9c8e6cf233e43f5c.
  • BIMCO. 2022. Report of the BIMCO biofouling survey 2021. [access 2023 Jul 13]. Available from: https://www.bimco.org/-/media/bimco/ships-ports-and-voyage-planning/environment-protection/biofouling/bimco-biofouling-survey-2021-report.ashx?rev=ac744991e58240b6bf7cfc9c95db5378.
  • Bloecher N, Floerl O. 2021. Towards cost-effective biofouling management in salmon aquaculture: a strategic outlook. Rev Aquacult. 13:783–795. doi: 10.1111/raq.12498.
  • Borkow G, Gabbay J. 2005. Copper as a biocidal tool. CMC. 12:2163–2175. doi: 10.2174/0929867054637617.
  • Bouman EA, Lindstad E, Rialland AI, Strømman AH. 2017. State-of-the-art technologies, measures, and potential for reducing GHG emissions from shipping – a review. Transp Res D Transp Environ. 52:408–421. doi: 10.1016/j.trd.2017.03.022.
  • Brady RF, Singer IL. 2000. Mechanical factors favoring release from fouling release coatings. Biofouling. 15:73–81. doi: 10.1080/08927010009386299.
  • Bressy C, Briand JF, Lafond S, Davy R, Mazeas F, Tanguy B, Martin C, Horatius L, Anton C, Quiniou F, et al. 2022. What governs marine fouling assemblages on chemically-active antifouling coatings? Prog Org Coat. 164:106701. doi: 10.1016/j.porgcoat.2021.106701.
  • Bressy C, Margaillan A, Faÿ F, Linossier I, Réhel K. 2009. Tin-free self-polishing marine antifouling coatings. In: Hellio C, Yebra D, editors. Advances in marine antifouling coatings and technologies. Cambridge: Woodhead Publishing; p. 445–491.
  • Callow JA, Callow ME. 2006. The Ulva spore adhesive system. In: Biological adhesives. Berlin, Heidelberg: Springer; p. 63–78.
  • Callow JA, Callow ME. 2011. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun. 2:10. doi: 10.1038/ncomms1251.
  • Callow JA, Callow ME, Ista LK, Lopez G, Chaudhury MK. 2005. The influence of surface energy on the wetting behaviour of the spore adhesive of the marine alga Ulva linza (synonym Enteromorpha linza). J R Soc Interface. 2:319–325. doi: 10.1098/rsif.2005.0041.
  • Callow ME, Fletcher RL. 1994. The influence of low surface energy materials on bioadhesion—a review. International Biodeterioration & Biodegradation. 34:333–348. doi: 10.1016/0964-8305(94)90092-2.
  • Camós Noguer A, Latipov R, Madsen FB, Daugaard AE, Hvilsted S, Olsen SM, Kiil S. 2018. Visualization of the distribution of surface-active block copolymers in PDMS-based coatings. Prog Org Coat. 120:179–189. doi: 10.1016/j.porgcoat.2018.03.011.
  • Camós Noguer A, Olsen SM, Hvilsted S, Kiil S. 2017a. Field study of the long-term release of block copolymers from fouling-release coatings. Prog Org Coat. 112:101–108. doi: 10.1016/j.porgcoat.2017.07.001.
  • Camós Noguer A, Olsen SM, Hvilsted S, Kiil S. 2017b. Diffusion of surface-active amphiphiles in silicone-based fouling-release coatings. Prog Org Coat. 106:77–86. doi: 10.1016/j.porgcoat.2017.02.014.
  • de Campos BG, Figueiredo J, Perina F, Abessa DMdS, Loureiro S, Martins R. 2022. Occurrence, effects and environmental risk of antifouling biocides (EU PT21): are marine ecosystems threatened? Crit Rev Environ Sci Technol. 52:3179–3210. doi: 10.1080/10643389.2021.1910003.
  • Cao S, Wang JD, Chen HS, Chen DR. 2011. Progress of marine biofouling and antifouling technologies. Chin Sci Bull. 56:598–612. doi: 10.1007/s11434-010-4158-4.
  • de Carvalho CCCR. 2018. Marine Biofilms: a successful microbial strategy with economic implications. Front Mar Sci. 5:126. doi: 10.3389/fmars.2018.00126.
  • Ceballos-Osuna L, Scianni C, Falkner M, Nedelcheva R, Miller W. 2021. Proxy-based model to assess the relative contribution of ballast water and biofouling’s potential propagule pressure and prioritize vessel inspections. PLoS ONE. 16:e0247538. doi: 10.1371/journal.pone.0247538.
  • Chambers LD, Stokes KR, Walsh FC, Wood RJK. 2006. Modern approaches to marine antifouling coatings. Surf Coat Technol. 201:3642–3652. doi: 10.1016/j.surfcoat.2006.08.129.
  • Champ MA. 2000. A review of organotin regulatory strategies, pending actions, related costs and benefits. Sci Total Environ. 258:21–71. doi: 10.1016/s0048-9697(00)00506-4.
  • Chapman JS, Diehl MA. 1995. Methylchloroisothiazolone-induced growth inhibition and lethality in Escherichia coli. J Appl Bacteriol. 78:134–141. doi: 10.1111/j.1365-2672.1995.tb02833.x.
  • Chen J, Fei Y, Wan Z. 2019. The relationship between the development of global maritime fleets and GHG emission from shipping. J Environ Manage. 242:31–39. doi: 10.1016/j.jenvman.2019.03.136.
  • Cima F, Varello R. 2023. Potential disruptive effects of copper-based antifouling paints on the biodiversity of coastal macrofouling communities. Environ Sci Pollut Res Int. 30:8633–8646. doi: 10.1007/s11356-021-17940-2.
  • Ciriminna R, Bright FV, Pagliaro M. 2015. Ecofriendly antifouling marine coatings. ACS Sustainable Chem Eng. 3:559–565. doi: 10.1021/sc500845n.
  • Claessens M, De Meester S, Van Landuyt L, De Clerck K, Janssen CR. 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull. 62:2199–2204. doi: 10.1016/j.marpolbul.2011.06.030.
  • Clare AS, Rittschof D, Gerhart DJ, Maki JS. 1992. Molecular approaches to nontoxic antifouling. Invertebr Reprod Dev. 22:67–76. doi: 10.1080/07924259.1992.9672258.
  • Coraddu A, Oneto L, Baldi F, Cipollini F, Atlar M, Savio S. 2019. Data-driven ship digital twin for estimating the speed loss caused by the marine fouling. Ocean Eng. 186:106063. doi: 10.1016/j.oceaneng.2019.05.045.
  • Cui J, Daniel D, Grinthal A, Lin K, Aizenberg J. 2015. Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing. Nat Mater. 14:790–795. doi: 10.1038/nmat4325.
  • Dafforn KA, Lewis JA, Johnston EL. 2011. Antifouling strategies: history and regulation, ecological impacts and mitigation. Mar Pollut Bull. 62:453–465. doi: 10.1016/j.marpolbul.2011.01.012.
  • Dahllöf I, Grunnet K, Haller R, Hjorth M, Kristine M, Groth Petersen D. 2005. Analysis, fate and toxicity of zinc-and copper pyrithione in the marine environment. Copenhagen: Nordic Council of Ministers.
  • Dahlström M, Mårtensson LGE, Jonsson PR, Arnebrant T, Elwing H. 2000. Surface active adrenoceptor compounds prevent the settlement of cyprid larvae of Balanus improvisus. Biofouling. 16:191–203. doi: 10.1080/08927010009378444.
  • Davidson I, Cahill P, Hinz A, Major R, Kluza D, Scianni C, Georgiades E. 2023. Biofouling occlusion of ships’ internal seawater systems: operational, economic, and biosecurity consequences. Biofouling. 39:410–426. doi: 10.1080/08927014.2023.2225411.
  • Dobretsov S, Rittschof D. 2023. “Omics” Techniques used in marine biofouling studies. Int J Mol Sci. 24:10518. doi: 10.3390/ijms241310518.
  • Dobretsov S, Rittschof D. 2020. Love at first taste: induction of larval settlement by marine microbes. Int J Mol Sci. 21:731. doi: 10.3390/ijms21030731.
  • Dobretsov S, Teplitski M, Bayer M, Gunasekera S, Proksch P, Paul VJ. 2011. Inhibition of marine biofouling by bacterial quorum sensing inhibitors. Biofouling. 27:893–905. doi: 10.1080/08927014.2011.609616.
  • Dobretsov S, Xiong H, Xu Y, Levin LA, Qian PY. 2007. Novel antifoulants: inhibition of larval attachment by proteases. Mar Biotechnol. 9:388–397. doi: 10.1007/s10126-007-7091-z.
  • Doney SC. 2006. The dangers of ocean acidification. Sci Am. 294:58–65. doi: 10.1038/scientificamerican0306-58.
  • Drake LA, Tamburri MN, First MR, Smith GJ, Johengen TH. 2014. How many organisms are in ballast water discharge? A framework for validating and selecting compliance monitoring tools. Mar Pollut Bull. 86:122–128. doi: 10.1016/j.marpolbul.2014.07.034.
  • Dugdale TM, Dagastine R, Chiovitti A, Wetherbee R. 2006. Diatom adhesive mucilage contains distinct supramolecular assemblies of a single modular protein. Biophys J. 90:2987–2993. doi: 10.1529/biophysj.105.079129.
  • Ederth T, Nygren P, Pettitt ME, Ostblom M, Du CX, Broo K, Callow ME, Callow J, Liedberg B. 2008. Anomalous settlement behavior of Ulva linza zoospores on cationic oligopeptide surfaces. Biofouling. 24:303–312. doi: 10.1080/08927010802192650.
  • Ekin A, Webster DC. 2007. Combinatorial and high-throughput screening of the effect of siloxane composition on the surface properties of crosslinked siloxane-polyurethane coatings. J Comb Chem. 9:178–188. doi: 10.1021/cc060115k.
  • European Environment Agency. 2022. Decarbonising road transport—the role of vehicles, fuels and transport demand. Available from: https://op.europa.eu/en/publication-detail/-/publication/a67d0c8b-0bc1-11ed-b11c-01aa75ed71a1/language-en.
  • Evans SM, Birchenough AC, Brancato MS. 2000. The TBT ban: out of the frying pan into the fire? Mar Pollut Bull. 40:204–211. doi: 10.1016/S0025-326X(99)00248-9.
  • Fears KP, Orihuela B, Rittschof D, Wahl KJ. 2018. Acorn barnacles secrete phase-separating fluid to clear surfaces ahead of cement deposition. Adv Sci. 5:1700762. doi: 10.1002/advs.201700762.
  • Ferreira O, Rijo P, Gomes JF, Santos R, Monteiro S, Vilas-Boas C, Correia-Da-Silva M, Almada S, Alves LG, Bordado JC, et al. 2020. Biofouling inhibition with grafted econea biocide: toward a nonreleasing eco-friendly multiresistant antifouling coating. ACS Sustainable Chem Eng. 8:12–17. doi: 10.1021/acssuschemeng.9b04550.
  • Finnie AA. 2006. Improved estimates of environmental copper release rates from antifouling products. Biofouling. 22:279–291. doi: 10.1080/08927010600898862.
  • Galhenage TP, Hoffman D, Silbert SD, Stafslien SJ, Daniels J, Miljkovic T, Finlay JA, Franco SC, Clare AS, Nedved BT, et al. 2016. Fouling-release performance of silicone oil-modified siloxane-polyurethane coatings. ACS Appl Mater Interfaces. 8:29025–29036. doi: 10.1021/acsami.6b09484.
  • Gaylarde CC, Neto JAB, da Fonseca EM. 2021. Paint fragments as polluting microplastics: a brief review. Mar Pollut Bull. 162:111847. doi: 10.1016/j.marpolbul.2020.111847.
  • Georgiades E, Scianni C, Davidson I, Tamburri MN, First MR, Ruiz G, Ellard K, Deveney M, Kluza D. 2021. The role of vessel biofouling in the translocation of marine pathogens: management considerations and challenges. Front Mar Sci. 8:435. doi: 10.3389/fmars.2021.660125.
  • Gohad NV, Aldred N, Hartshorn CM, Lee YJ, Cicerone MT, Orihuela B, Clare AS, Rittschof D, Mount AS. 2014. Synergistic roles for lipids and proteins in the permanent adhesive of barnacle larvae. Nat Commun. 5:4414. doi: 10.1038/ncomms5414.
  • Goldsmit J, Archambault P, Chust G, Villarino E, Liu G, Lukovich JV, Barber DG, Howland KL. 2018. Projecting present and future habitat suitability of ship-mediated aquatic invasive species in the Canadian Arctic. Biol Invasions. 20:501–517. doi: 10.1007/s10530-017-1553-7.
  • Gollasch S, David M, Voigt M, Dragsund E, Hewitt C, Fukuyo Y. 2007. Critical review of the IMO international convention on the management of ships’ ballast water and sediments. Harmful Algae. 6:585–600. doi: 10.1016/j.hal.2006.12.009.
  • Haave M, Lorenz C, Primpke S, Gerdts G. 2019. Different stories told by small and large microplastics in sediment - first report of microplastic concentrations in an urban recipient in Norway. Mar Pollut Bull. 141:501–513. doi: 10.1016/j.marpolbul.2019.02.015.
  • Hadfield MG, Freckelton ML, Nedved BT. 2021. The natural sequence of events in larval settlement and metamorphosis of Hydroides elegans (Polychaeta; Serpulidae). PLoS One. 16:e0249692. doi: 10.1371/journal.pone.0249692.
  • Halpern BS, Longo C, Hardy D, McLeod KL, Samhouri JF, Katona SK, Kleisner K, Lester SE, O'Leary J, Ranelletti M, et al. 2012. An index to assess the health and benefits of the global ocean. Nature. 488:615–620. doi: 10.1038/nature11397.
  • Havel JE, Kovalenko KE, Thomaz SM, Amalfitano S, Kats LB. 2015. Aquatic invasive species: challenges for the future. Hydrobiologia. 750:147–170. doi: 10.1007/s10750-014-2166-0.
  • Hawkins ML, Faÿ F, Réhel K, Linossier I, Grunlan MA. 2014. Bacteria and diatom resistance of silicones modified with PEO-silane amphiphiles. Biofouling. 30:247–258. doi: 10.1080/08927014.2013.862235.
  • Hawkins ML, Grunlan MA. 2012. The protein resistance of silicones prepared with a PEO-silane amphiphile. J Mater Chem. 22:19540–19546. doi: 10.1039/c2jm32322b.
  • Hawkins ML, Schott SS, Grigoryan B, Rufin MA, Ngo BKD, VanderWal L, Stafslien SJ, Grunlan MA. 2017. Anti-protein and anti-bacterial behavior of amphiphilic silicones. Polym Chem. 8:5239–5251. doi: 10.1039/C7PY00944E.
  • He LS, Zhang G, Qian PY. 2013. Characterization of two 20kDa-cement protein (cp20k) homologues in Amphibalanus amphitrite. PLoS One. 8:e64130. doi: 10.1371/journal.pone.0064130.
  • He Y, Sun C, Jiang F, Yang B, Li J, Zhong C, Zheng L, Ding H. 2018. Lipids as integral components in mussel adhesion. Soft Matter. 14:7145–7154. doi: 10.1039/c8sm00509e.
  • Hempl. 2023. Product catalogue. [access 2023 Jul 13]. Available from: https://www.hempel.com/products/brand.
  • Hershey DM, Porfírio S, Black I, Jaehrig B, Heiss C, Azadi P, Fiebig A, Crosson S. 2019. Composition of the holdfast polysaccharide from Caulobacter crescentus. J Bacteriol. 201:e0027619. doi: 10.1128/JB.00276-19.
  • Hijnen N, Jongerius M. 2018. UV-C keeping ship hulls free from biofouling. [access 2023 Jul 13]. Available from: https://www.marinelink.com/news/uvc-keeping-ship-hulls-free-biofouling-443251.
  • Hobbs WO, McCall M, Lanksbury J, Seiders K, Sandvik P, Jones M, Chuhran H, Momohara D, Norton D. 2022. A baseline of copper associated with antifouling paint in marinas within a large fjord estuary. Mar Pollut Bull. 178:113547. doi: 10.1016/j.marpolbul.2022.113547.
  • Holland R, Dugdale TM, Wetherbee R, Brennan AB, Finlay JA, Callow JA, Callow ME. 2004. Adhesion and motility of fouling diatoms on a silicone elastomer. Biofouling. 20:323–329. doi: 10.1080/08927010400029031.
  • Hopkins G, Davidson I, Georgiades E, Floerl O, Morrisey D, Cahill P. 2021. Managing biofouling on submerged static artificial structures in the marine environment – assessment of current and emerging approaches. Front Mar Sci. 8:759194. doi: 10.3389/fmars.2021.759194.
  • Howell C, Vu TL, Lin JJ, Kolle S, Juthani N, Watson E, Weaver JC, Alvarenga J, Aizenberg J. 2014. Self-replenishing vascularized fouling-release surfaces. ACS Appl Mater Interfaces. 6:13299–13307. doi: 10.1021/am503150y.
  • Hu P, Xie Q, Ma C, Zhang G. 2020. Silicone-based fouling-release coatings for marine antifouling. Langmuir. 36:2170–2183. doi: 10.1021/acs.langmuir.9b03926.
  • Hunsucker KZ, Vora GJ, Hunsucker JT, Gardner H, Leary DH, Kim S, Lin B, Swain G. 2018. Biofilm community structure and the associated drag penalties of a groomed fouling release ship hull coating. Biofouling. 34:162–172. doi: 10.1080/08927014.2017.1417395.
  • Hunter JE, Evans LV. 1990. The toxicity of the biocides zineb, nabam and their derivatives to the ship‐fouling diatom Amphora coffeaeformis. Biofouling. 2:267–287. doi: 10.1080/08927019009378150.
  • International Maritime Organization 2020. Fourth greenhouse gas study 2020. [access 2023 Jul 13]. Available from: https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx.
  • International Maritime Organization. 2023a. Invasive aquatic species (IAS). [access 2023 Jul 13]. https://www.imo.org/en/OurWork/Environment/Pages/AquaticInvasiveSpecies(AIS).aspx.
  • International Maritime Organization. 2023b. Common hull fouling invasive species. [access 2023 Jul 13]. https://www.imo.org/en/OurWork/Environment/Pages/Common-Hull-Fouling-Invasive-Species.aspx.
  • Jain A, Bhosle NB. 2009. Biochemical composition of the marine conditioning film: implications for bacterial adhesion. Biofouling. 25:13–19. doi: 10.1080/08927010802411969.
  • O’Reilly J. 2023. Information on the status of the large marine ecosystems. [access 2023 Feb 10]. http://onesharedocean.org/lmes.
  • Jotun. 2023. Product catalogue. [access 2023 Jul 13]. Available from: https://www.jotun.com/de-en/industries/products?categories=fouling_protection&page=2.
  • Jung SM, Bae JS, Kang SG, Son JS, Jeon JH, Lee HJ, Jeon JY, Sidharthan M, Ryu SH, Shin HW. 2017. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar Pollut Bull. 124:811–818. doi: 10.1016/j.marpolbul.2016.11.047.
  • Jusoh I, Wolfram J. 1996. Effects of marine growth and hydrodynamic loading on offshore structures. Jurnal Mekanikal. 1:77–98.
  • Kamino K. 2006. Barnacle underwater attachment. In: Biological adhesives. Berlin, Heidelberg: Springer; p. 145–166.
  • Karak N. 2016. Biopolymers for paints and surface coatings. In: Torgal FP, Ivanov V, Karak N, Jonkers H, editors. Biopolymers and biotech admixtures for eco-efficient construction materials. Waltham (MA): Woodhead Publishing; p. 333–368.
  • Kim H-J. 2021. Strategic actions for sustainable vessel hull coatings in line with the UN SDGs. jamet. 45:231–242. doi: 10.5916/jamet.2021.45.4.231.
  • Kim HJ, Park JS, Lee TK, Kang D, Kang JH, Shin K, Jung SW. 2021. Dynamics of marine bacterial biofouling communities after initial Alteromonas genovensis biofilm attachment to anti-fouling paint substrates. Mar Pollut Bull. 172:112895. doi: 10.1016/j.marpolbul.2021.112895.
  • Konstantinou IK, Albanis TA. 2004. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review. Environ Int. 30:235–248. doi: 10.1016/S0160-4120(03)00176-4.
  • Krause LMK, Manderfeld E, Gnutt P, Vogler L, Wassick A, Richard K, Rudolph M, Hunsucker KZ, Swain GW, Rosenhahn B, et al. 2023. Semantic segmentation for fully automated macrofouling analysis on coatings after field exposure. Biofouling. 39:64–79. doi: 10.1080/08927014.2023.2185143.
  • Lachnit M, Buhmann MT, Klemm J, Kröger N, Poulsen N. 2019. Identification of proteins in the adhesive trails of the diatom Amphora coffeaeformis. Philos Trans R Soc Lond B Biol Sci. 374:20190196. doi: 10.1098/rstb.2019.0196.
  • Lagerström M, Wrange AL, Oliveira DR, Granhag L, Larsson AI, Ytreberg E. 2022. Are silicone foul-release coatings a viable and environmentally sustainable alternative to biocidal antifouling coatings in the Baltic Sea region? Mar Pollut Bull. 184:114102. doi: 10.1016/j.marpolbul.2022.114102.
  • Lagerström M, Ytreberg E, Wiklund AKE, Granhag L. 2020. Antifouling paints leach copper in excess – study of metal release rates and efficacy along a salinity gradient. Water Res. 186:116383. doi: 10.1016/j.watres.2020.116383.
  • Lebreton LCM, Greer SD, Borrero JC. 2012. Numerical modelling of floating debris in the world’s oceans. Mar Pollut Bull. 64:653–661. doi: 10.1016/j.marpolbul.2011.10.027.
  • Lee H, Reusser DA, Olden JD, Smith SS, Graham J, Burkett V, Dukes JS, Piorkowski RJ, Mcphedran J. 2008. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate. Conserv Biol. 22:575–584. doi: 10.1111/j.1523-1739.2008.00955.x.
  • Legg M, Yücel MK, Garcia De Carellan I, Kappatos V, Selcuk C, Gan TH. 2015. Acoustic methods for biofouling control: a review. Ocean Eng. 103:237–247. doi: 10.1016/j.oceaneng.2015.04.070.
  • Lejars M, Margaillan A, Bressy C. 2012. Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev. 112:4347–4390. doi: 10.1021/cr200350v.
  • Lemesle C, Bellayer S, Duquesne S, Schuller A-S, Thomas L, Casetta M, Jimenez M. 2021. Self-stratified bio-based coatings: formulation and elucidation of critical parameters governing stratification. Appl Surf Sci. 536:147687. doi: 10.1016/j.apsusc.2020.147687.
  • Lindgren JF, Ytreberg E, Holmqvist A, Dahlström M, Dahl P, Berglin M, Wrange AL, Dahlström M. 2018. Copper release rate needed to inhibit fouling on the west coast of Sweden and control of copper release using zinc oxide. Biofouling. 34:453–463. doi: 10.1080/08927014.2018.1463523.
  • Lindholdt A, Dam-Johansen K, Olsen SM, Yebra DM, Kiil S. 2015. Effects of biofouling development on drag forces of hull coatings for ocean-going ships: a review. J Coat Technol Res. 12:415–444. doi: 10.1007/s11998-014-9651-2.
  • Liu Y, Leng C, Chisholm B, Stafslien S, Majumdar P, Chen Z. 2013. Surface structures of PDMS incorporated with quaternary ammonium salts designed for antibiofouling and fouling release applications. Langmuir. 29:2897–2905. doi: 10.1021/la304571u.
  • Lovell SJ, Stone SF, Fernandez L. 2006. The economic impacts of aquatic invasive species: a review of the literature. Agric Resour Econ Rev. 35:195–208. doi: 10.1017/S1068280500010157.
  • Loxton J, Macleod AK, Nall CR, McCollin T, Machado I, Simas T, Vance T, Kenny C, Want A, Miller RG. 2017. Setting an agenda for biofouling research for the marine renewable energy industry. International Marine Energy Journal. 19:292–303. doi: 10.1016/j.ijome.2017.08.006.
  • Majumdar P, Lee E, Gubbins N, Stafslien SJ, Daniels J, Thorson CJ, Chisholm BJ. 2009. Synthesis and antimicrobial activity of quaternary ammonium-functionalized POSS (Q-POSS) and polysiloxane coatings containing Q-POSS. Polymer. 50:1124–1133. doi: 10.1016/j.polymer.2009.01.009.
  • Majumdar P, Webster DC. 2005. Preparation of siloxane-urethane coatings having spontaneously formed stable biphasic microtopograpical surfaces. Macromolecules. 38:5857–5859. doi: 10.1021/ma050967t.
  • Maki JS, Rittschof D, Costlow JD, Mitchell R. 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar Biol. 1988 97:2 97: 199–206. doi: 10.1007/BF00391303.
  • Manzo S, Buono S, Cremisini C. 2008. Predictability of copper, irgarol, and diuron combined effects on sea urchin Paracentrotus lividus. Arch Environ Contam Toxicol. 54:57–68. doi: 10.1007/s00244-007-9009-1.
  • Martinelli E, Pretti C, Oliva M, Glisenti A, Galli G. 2018. Sol-gel polysiloxane films containing different surface-active trialkoxysilanes for the release of the marine foulant Ficopomatus enigmaticus. Polymer. 145:426–433. doi: 10.1016/j.polymer.2018.05.026.
  • Mazan J, Leclerc B, Galandrin N, Couarraze G. 1995. Diffusion of free polydimethylsiloxane chains in polydimethylsiloxane elastomer networks. Eur Polym J. 31:803–807. doi: 10.1016/0014-3057(95)00039-9.
  • Miller RJ, Adeleye AS, Page HM, Kui L, Lenihan HS, Keller AA. 2020. Nano and traditional copper and zinc antifouling coatings: metal release and impact on marine sessile invertebrate communities. J Nanopart Res. 22:1–15. doi: 10.1007/s11051-020-04875-x.
  • Molnar JL, Gamboa RL, Revenga C, Spalding MD. 2008. Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ. 6:485–492. doi: 10.1890/070064.
  • Moser CS, Wier TP, Grant JF, First MR, Tamburri MN, Ruiz GM, Miller AW, Drake LA. 2016. Quantifying the total wetted surface area of the world fleet: a first step in determining the potential extent of ships’ biofouling. Biol Invasions. 18:265–277. doi: 10.1007/s10530-015-1007-z.
  • Nikki R, Abdul Jaleel KU, Abdul Ragesh S, Shini S, Saha M, Dinesh Kumar PK. 2021. Abundance and characteristics of microplastics in commercially important bottom dwelling finfishes and shellfish of the Vembanad Lake, India. Mar Pollut Bull. 172:112803. doi: 10.1016/j.marpolbul.2021.112803.
  • Nippon. 2023. Product catalogue. [access 2023 Jul 13]. Available from: https://www.nipponpaint-marine.com/product_cat/antifouling-coating/.
  • Okano K, Shimizu K, Satuito CG, Fusetani N. 1996. Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa. J Exp Biol. 199:2131–2137. doi: 10.1242/jeb.199.10.2131.
  • Oliveira D, Granhag L. 2016. Matching forces applied in underwater hull cleaning with adhesion strength of marine organisms. JMSE. 4:66. doi: 10.3390/jmse4040066.
  • Omae I. 2003. Organotin antifouling paints and their alternatives. Appl Organometal Chem. 17:81–105. doi: 10.1002/aoc.396.
  • Ozkan A, Berberoglu H. 2013. Physico-chemical surface properties of microalgae. Colloids Surf B Biointerfaces. 112:287–293. doi: 10.1016/j.colsurfb.2013.08.001.
  • Papadatou M, Knight M, Salta M. 2022. High-throughput method development for in-situ quantification of aquatic phototrophic biofilms. Biofouling. 38:521–535. doi: 10.1080/08927014.2022.2094259.
  • Papadatou M, Robson SC, Dobretsov S, Watts JEM, Longyear J, Salta M. 2021. Marine biofilms on different fouling control coating types reveal differences in microbial community composition and abundance. Microbiologyopen. 10:e1231. doi: 10.1002/mbo3.1231.
  • Paz-Villarraga CA, Ítalo CB, Fillmann G. 2022. Biocides in antifouling paint formulations currently registered for use. Environ Sci Pollut Res Int. 29:30090–30101. doi: 10.1007/s11356-021-17662-5.
  • Phuong NN, Poirier L, Lagarde F, Kamari A, Zalouk-Vergnoux A. 2018. Microplastic abundance and characteristics in French Atlantic coastal sediments using a new extraction method. Environ Pollut. 243:228–237. doi: 10.1016/j.envpol.2018.08.032.
  • Poloczanska ES, Butler AJ. 2010. Biofouling and climate change. In: Dürr S, Thomason JC, editors. Biofouling. New York: John Wiley & Sons, Ltd; p. 333–347.
  • PPG. 2023. Product catalogue. [access 2023 Jul 13]. Available from: https://www.ppgpmc.com/marine/antifouling-and-fouling-release/products.
  • Rahimi AR, Stafslien SJ, Vanderwal L, Finlay JA, Clare AS, Webster DC. 2020. Amphiphilic zwitterionic-PDMS-based surface-modifying additives to tune fouling-release of siloxane-polyurethane marine coatings. Prog Org Coat. 149:105931. doi: 10.1016/j.porgcoat.2020.105931.
  • Rahimi AR, Murphy M, Faiyaz K, Stafslien SJ, Vanderwal L, Pade M, Finlay JA, Clare AS, Webster DC. 2022. Amphiphilic marine coating systems of self-stratified PDMS-PEG surfaces with an epoxy-polyurethane matrix. J Coat Technol Res. 19:795–812. doi: 10.1007/s11998-021-00561-2.
  • Richmond MD, Seed R. 1991. A review of marine macrofouling communities with special reference to animal fouling. Biofouling. 3:151–168. doi: 10.1080/08927019109378169.
  • Rittschof D, Orihuela B, Genzer J, Efimenko K. 2022. PDMS networks meet barnacles: a complex and often toxic relationship. Biofouling. 38:876–888. doi: 10.1080/08927014.2022.2145471.
  • Röckmann C, Lagerveld S, Stavenuiter J. 2017. Operation and maintenance costs of offshore wind farms and potential multi-use platforms in the Dutch North Sea. In: Aquaculture perspective of multi-use sites in the open ocean. Cham: Springer International Publishing. p. 97–113.
  • Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busqué F, Ruiz-Molina D. 2019. The chemistry behind catechol-based adhesion. Angew Chem Int Ed Engl. 58:696–714. doi: 10.1002/anie.201801063.
  • Salleh NA, Rosli FN, Akbar MA, Yusof A, Sahrani FK, Razak SA, Ahmad A, Usup G, Bunawan H. 2021. Pathogenic hitchhiker diversity on international ships’ ballast water at West Malaysia port. Mar Pollut Bull. 172:112850. doi: 10.1016/j.marpolbul.2021.112850.
  • Salta M, Wharton JA, Blache Y, Stokes KR, Briand JF. 2013. Marine biofilms on artificial surfaces: structure and dynamics. Environ Microbiol. 15:2879–2893. doi: 10.1111/1462-2920.12186.
  • Schultz MP. 2007. Effects of coating roughness and biofouling on ship resistance and powering. Biofouling. 23:331–341. doi: 10.1080/08927010701461974.
  • Scianni C, Georgiades E. 2019. Vessel in-water cleaning or treatment: identification of environmental risks and science needs for evidence-based decision making. Front Mar Sci. 6:467. doi: 10.3389/fmars.2019.00467.
  • Selim MS, Yang H, El-Safty SA, Fatthallah NA, Shenashen MA, Wang FQ, Huang Y. 2019. Superhydrophobic coating of silicone/β–MnO2 nanorod composite for marine antifouling. Colloids Surf A. 570:518–530. doi: 10.1016/j.colsurfa.2019.03.026.
  • Shi W, Cui T, Wu H, LeBlanc GA, Wang F, Lihui AN. 2021. A proposed nomenclature for microplastic contaminants. Mar Pollut Bull. 172:112960. doi: 10.1016/j.marpolbul.2021.112960.
  • Silva ER, Ferreira O, Ramalho PA, Azevedo NF, Bayón R, Igartua A, Bordado JC, Calhorda MJ. 2019. Eco-friendly non-biocide-release coatings for marine biofouling prevention. Sci Total Environ. 650:2499–2511. doi: 10.1016/j.scitotenv.2018.10.010.
  • Silva ER, Tulcidas AV, Ferreira O, Bayón R, Igartua A, Mendoza G, Mergulhão FJM, Faria SI, Gomes LC, Carvalho S, et al. 2021. Assessment of the environmental compatibility and antifouling performance of an innovative biocidal and foul-release multifunctional marine coating. Environ Res. 198:111219. doi: 10.1016/j.envres.2021.111219.
  • Song C, Cui W. 2020. Review of underwater ship hull cleaning technologies. J Marine Sci Appl. 19:415–429. doi: 10.1007/s11804-020-00157-z.
  • Song YK, Hong SH, Jang M, Kang JH, Kwon OY, Han GM, Shim WJ. 2014. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer. Environ Sci Technol. 48:9014–9021. doi: 10.1021/es501757s.
  • Soon ZY, Jung JH, Jang M, Kang JH, Jang MC, Lee JS, Kim M. 2019. Zinc Pyrithione (ZnPT) as an antifouling biocide in the marine environment—a literature review of its toxicity, environmental fates, and analytical methods. Water Air Soil Pollut. 230:310. doi: 10.1007/s11270-019-4361-0.
  • Sørensen KF, Hillerup D, Blom A, M, Olsen S. 2015. ActiGuard®: Novel technology to improve long-term performance of silicone-based fouling defence coatings. [access 2023 Jul 13]. Available from: https://www.hempel.com/-/media/Files/Global/PDF/Resource-centre–-Marine/Technical-papers/ActiGuardtechnology.pdf.
  • Soroldoni S, Abreu F, Castro ÍB, Duarte FA, Pinho GLL. 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J Hazard Mater. 330:76–82. doi: 10.1016/j.jhazmat.2017.02.001.
  • Sun Y, Ji Y, Lang Y, Wang L, Liu B, Zhang Z. 2018. A comparative study on the impact of the carbon nanotubes-modified polydimethylsiloxane nanocomposites on the colonization dynamics of the pioneer biofilm communities. International Biodeterioration & Biodegradation. 129:195–201. doi: 10.1016/j.ibiod.2018.02.011.
  • Swain G, Anil AC, Baier RE, Chia FS, Conte E, Cook A, Hadfield M, Haslbeck E, Holm E, Kavanagh C, et al. 2000. Biofouling and barnacle adhesion data for fouling‐release coatings subjected to static immersion at seven marine sites. Biofouling. 16:331–344. doi: 10.1080/08927010009378456.
  • Swain G, Erdogan C, Foy L, Gardner H, Harper M, Hearin J, Hunsucker KZ, Hunsucker JT, Lieberman K, Nanney M, et al. 2022. Proactive in-water ship hull grooming as a method to reduce the environmental footprint of ships. Front Mar Sci. 8:808549. doi: 10.3389/fmars.2021.808549.
  • Symington A. 2023. Mapping shipping lanes: maritime traffic around the world. [access 2023 Jul 13]. Available from: https://www.visualcapitalist.com/cp/mapping-shipping-lanes-maritime-traffic-around-the-world.
  • Takahashi CK, Turner A, Millward GE, Glegg GA. 2012. Persistence and metallic composition of paint particles in sediments from a tidal inlet. Mar Pollut Bull. 64:133–137. doi: 10.1016/j.marpolbul.2011.10.010.
  • Tamburri MN, Davidson IC, First MR, Scianni C, Newcomer K, Inglis GJ, Georgiades ET, Barnes JM, Ruiz GM. 2020. In-water cleaning and capture to remove ship biofouling: an initial evaluation of efficacy and environmental safety. Front Mar Sci. 7:437. doi: 10.3389/fmars.2020.00437.
  • Thomas J, Choi SB, Fjeldheim R, Boudjouk P. 2004. Silicones containing pendant biocides for antifouling coatings. Biofouling. 20:227–236. doi: 10.1080/08927010400011229.
  • Thomas K. 2009. The use of broad-spectrum organic biocides in marine antifouling paints. In: Hellio C, Yebra D, editors. Advances in marine antifouling coatings and technologies. Cambridge: Woodhead Publishing; p. 522–553.
  • Thompson SEM, Coates JC. 2017. Surface sensing and stress-signalling in Ulva and fouling diatoms – potential targets for antifouling: a review. Biofouling. 33:410–432. doi: 10.1080/08927014.2017.1319473.
  • Tillman RW, Siegel MR, Long JW. 1973. Mechanism of action and fate of the fungicide chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile) in biological systems: I. Reactions with cells and subcellular components of Saccharomyces pastorianus. Pestic Biochem Physiol. 3:160–167. doi: 10.1016/0048-3575(73)90100-4.
  • Tribou M, Swain G. 2015. Grooming using rotating brushes as a proactive method to control ship hull fouling. Biofouling. 31:309–319. doi: 10.1080/08927014.2015.1041021.
  • Tribou M, Swain G. 2017. The effects of grooming on a copper ablative coating: a six year study. Biofouling. 33:494–504. doi: 10.1080/08927014.2017.1328596.
  • Truby K, Wood C, Stein J, Cella J, Carpenter J, Kavanagh C, Swain G, Wiebe D, Lapota D, Meyer A, et al. 2000. Evaluation of the performance enhancement of silicone biofouling‐release coatings by oil incorporation. Biofouling. 15:141–150. doi: 10.1080/08927010009386305.
  • Vellwock AE, Fu J, Meng Y, Thiyagarajan V, Yao H. 2019. A data-driven approach to predicting the attachment density of biofouling organisms. Biofouling. 35:832–839. doi: 10.1080/08927014.2019.1667982.
  • Verschoor A, de Poorter L, Dröge R, Kuenen J, de Valk E. 2016. Emission of microplastics and potential mitigation measures abrasive cleaning agents, paints and tyre wear. [access 2023 Jul 13]. Available from: https://www.rivm.nl/bibliotheek/rapporten/2016-0026.pdf.
  • Vianello A, Boldrin A, Guerriero P, Moschino V, Rella R, Sturaro A, da Ros L. 2013. Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification. Estuarine Coastal Shelf Sci. 130:54–61. doi: 10.1016/j.ecss.2013.03.022.
  • Vilas-Boas C, Running L, Pereira D, Cidade H, Correia-da-Silva M, Atilla-Gokcumen GE, Aga DS. 2022. Impact of tralopyril and triazolyl glycosylated chalcone in human retinal cells’ lipidome. Molecules. 27:5247. doi: 10.3390/molecules27165247.
  • Villa F, Cappitelli F. 2013. Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev. 12:245–254. doi: 10.1007/s11101-013-9286-4.
  • Vinagre PA, Simas T, Cruz E, Pinori E, Svenson J. 2020. Marine biofouling: a European database for the marine renewable energy sector. JMSE. 8:495. doi: 10.3390/jmse8070495.
  • Voulvoulis N, Scrimshaw MD, Lester JN. 1999. Alternative antifouling biocides. Appl Organometal Chem. 13:135–143. doi: 10.1002/(SICI)1099-0739(199903)13:3<135::AID-AOC831>3.0.CO;2-G.
  • Wang D, Klein J, Mejía E. 2017. Catalytic systems for the cross-linking of organosilicon polymers. Chem Asian J. 12:1180–1197. doi: 10.1002/asia.201700304.
  • Wang Y, Lee SM, Gentle IR, Dykes GA. 2020. A statistical approach for modelling the physical process of bacterial attachment to abiotic surfaces. Biofouling. 36:1227–1242. doi: 10.1080/08927014.2020.1865934.
  • Wieczorek SK, Todd CD. 1997. Inhibition and facilitation of bryozoan and ascidian settlement by natural multi-species biofilms: effects of film age and the roles of active and passive larval attachment. Mar Biol. 1997 128:128: 463–473. doi: 10.1007/s002270050113.
  • Williams SL, Davidson IC, Pasari JR, Ashton GV, Carlton JT, Crafton RE, Fontana RE, Grosholz ED, Miller AW, Ruiz GM, et al. 2013. Managing multiple vectors for marine invasions in an increasingly connected world. BioScience. 63:952–966.
  • Winfield MO, Downer A, Longyear J, Dale M, Barker GLA. 2018. Comparative study of biofilm formation on biocidal antifouling and fouling-release coatings using next-generation DNA sequencing. Biofouling. 34:464–477. doi: 10.1080/08927014.2018.1464152.
  • Woods Hole Oceanographic Institution.1952. Characteristics of antifouling coatings. Marine fouling and its prevention. Monterey (CA): United States Navy Departments Bureau of Ships; p. 313–322.
  • Xie Q, Ma C, Liu C, Ma J, Zhang G. 2015. Poly(dimethylsiloxane)-based polyurethane with chemically attached antifoulants for durable marine antibiofouling. ACS Appl Mater Interfaces. 7:21030–21037. doi: 10.1021/acsami.5b07325.
  • Xie Q, Ma C, Zhang G, Bressy C. 2018. Poly(ester)–poly(silyl methacrylate) copolymers: synthesis and hydrolytic degradation kinetics. Polym Chem. 9:1448–1454. doi: 10.1039/C8PY00052B.
  • Xie Q, Pan J, Ma C, Zhang G. 2019. Dynamic surface antifouling: mechanism and systems. Soft Matter. 15:1087–1107. doi: 10.1039/c8sm01853g.
  • Yan T, Yan W, Dong Y, Wang H, Yan Y, Liang G. 2006. Marine fouling of offshore installations in the northern Beibu Gulf of China. International Biodeterioration & Biodegradation. 58:99–105. doi: 10.1016/j.ibiod.2006.07.007.
  • Yebra DM, Kiil S, Dam-Johansen K. 2004. Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Prog Org Coat. 50:75–104. doi: 10.1016/j.porgcoat.2003.06.001.
  • Yeh SB, Chen CS, Chen WY, Huang CJ. 2014. Modification of silicone elastomer with zwitterionic silane for durable antifouling properties. Langmuir. 30:11386–11393. doi: 10.1021/la502486e.
  • Vander Zanden MJ, Olden JD. 2008. A management framework for preventing the secondary spread of aquatic invasive species. Can J Fish Aquat Sci. 65:1512–1522. doi: 10.1139/F08-099.
  • Zeng F, Wunderer J, Salvenmoser W, Ederth T, Rothbächer U. 2019. Identifying adhesive components in a model tunicate. Philos Trans R Soc B. 374:201901197.
  • Zhang ZP, Qi YH, Ba M, Liu F. 2013. Investigation of silicone oil leaching in PDMS fouling release coating by confocal laser scanning microscope. AMR. 842:737–741. doi: 10.4028/www.scientific.net/AMR.842.737.
  • Zhao W, Yang J, Guo H, Xu T, Li Q, Wen C, Sui X, Lin C, Zhang J, Zhang L. 2019. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix. Chem Eng Sci. 207:790–798. doi: 10.1016/j.ces.2019.06.042.
  • Zhou X, Xie Q, Ma C, Chen Z, Zhang G. 2015. Inhibition of marine biofouling by use of degradable and hydrolyzable silyl acrylate copolymer. Ind Eng Chem Res. 54:9559–9565. doi: 10.1021/acs.iecr.5b01819.