Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 7
195
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The impact of potassium peroxymonosulphate and chlorinated cyanurates on biofilms of Stenotrophomonas maltophilia: effects on biofilm control, regrowth, and mechanical properties

, , , , & ORCID Icon
Pages 691-705 | Received 07 Jun 2023, Accepted 27 Aug 2023, Published online: 25 Sep 2023

References

  • Adhikari S, Yanuar E, Ng D-Q. 2022. Widespread nickel contamination in drinking water supplies of elementary schools in Taichung, Taiwan. Environ Sci Pollut Res Int. 29:12531–12539. doi: 10.1007/s11356-021-15137-1.
  • Andersson A, Harir M, Gonsior M, Hertkorn N, Schmitt-Kopplin P, Kylin H, Karlsson S, Ashiq MJ, Lavonen E, Nilsson K, et al. 2019. Waterworks-specific composition of drinking water disinfection by-products. Environ Sci Water Res Technol. 5:861–872. doi: 10.1039/C9EW00034H.
  • Cahoon LB. 2019. Water purification: treatment of microbial contamination. In: Ahuja S, editor. Advances in water purification techniques. USA: Elsevier; p. 385–395. doi: 10.1016/B978-0-12-814790-0.00015-6.
  • Camper AK. 1994. Coliform regrowth and biofilm accumulation in drinking water systems: a review. In: Geesey GG, Lewandowski Z, Flemming H-C, editors. Biofouling Biocorrosion in Industrial Water Systems. 1st ed. USA: CRC Press; p. 91–105. ISBN: 0-87371-928-X.
  • Chen X, Stewart PS. 2002. Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol. 59:718–720. doi: 10.1007/s00253-002-1044-2.
  • Chowdhury D, Rahman A, Hu H, Jensen SO, Deva AK, Vickery K. 2019. Effect of disinfectant formulation and organic soil on the efficacy of oxidizing disinfectants against biofilms. J Hosp Infect. 103:e33–e41. doi: 10.1016/j.jhin.2018.10.019.
  • Ciofu O, Moser C, Jensen PØ, Høiby N. 2022. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol. 20:621–635. doi: 10.1038/s41579-022-00682-4.
  • Clasen T, Edmondson P. 2006. Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level. Int J Hyg Environ Health. 209:173–181. doi: 10.1016/j.ijheh.2005.11.004.
  • Desmond P, Best JP, Morgenroth E, Derlon N. 2018. Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Res. 132:211–221. doi: 10.1016/j.watres.2017.12.058.
  • Duan X, Sun H, Kang J, Wang Y, Indrawirawan S, Wang S. 2015. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons. ACS Catal. 5:4629–4636. doi: 10.1021/acscatal.5b00774.
  • European Chemicals Agency (ECHA). 2020. Article 95 List of active substances and product suppliers. [accessed 2020 Jul 30]. https://echa.europa.eu/pt/information-on-chemicals/active-substance-suppliers.
  • European Chemicals Agency (ECHA). 2022a. Sodium dichloroisocyanurate dihydrate factsheet. [accessed 2023 Feb 20]. https://echa.europa.eu/pt/information-on-chemicals/biocidal-active-substances/-/disas/factsheet/1219/PT05.
  • European Chemicals Agency (ECHA). 2022b. Symclosen factsheet. [accessed 2023 Feb 20]. https://echa.europa.eu/pt/information-on-chemicals/biocidal-active-substances/-/disas/factsheet/1395/PT05.
  • European Chemicals Agency (ECHA). 2023. Pentapotassium bis(peroxymonosulphate) bis(sulphate) factsheet. [accessed 2023 Feb 20]. https://echa.europa.eu/pt/information-on-chemicals/biocidal-active-substances/-/disas/factsheet/1339/PT05.
  • European Standard. 1997. EN 1276: chemical disinfectants and antiseptics – Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic, and institutional areas – Test method and requirements (phase 2, step 1).
  • Fernandes S, Gomes IB, Simões M. 2022. Antibiofilm activity of glycolic acid and glyoxal and their diffusion–reaction interactions with biofilm components. Food Res Int. 152:110921. doi: 10.1016/j.foodres.2021.110921.
  • Ferry JD. 1980. Viscoelastic properties of polymers. New York (NY): John Wiley & Sons, Inc.
  • Fish KE, Boxall JB. 2018. Biofilm microbiome (re)growth dynamics in drinking water distribution systems are impacted by chlorine concentration. Front Microbiol. 9:2519. doi: 10.3389/fmicb.2018.02519.
  • Fish KE, Reeves-McLaren N, Husband S, Boxall J. 2020. Uncharted waters: the unintended impacts of residual chlorine on water quality and biofilms. NPJ Biofilms Microbiomes. 6:34. doi: 10.1038/s41522-020-00144-w.
  • Fu Y, Peng H, Liu J, Nguyen TH, Hashmi MZ, Shen C. 2021. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. Sci Total Environ. 764:142851. doi: 10.1016/j.scitotenv.2020.142851.
  • Fukuzaki S. 2006. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 11:147–157. doi: 10.4265/bio.11.147.
  • Gao P, Yan S, Tian X, Nie Y, Wang Y, Deng Y, Tu J. 2022. Identification and manipulation of active centers on perovskites to enhance catalysis of peroxymonosulfate for degradation of emerging pollutants in water. J Hazard Mater. 424:127384. doi: 10.1016/j.jhazmat.2021.127384.
  • Ghanbari F, Moradi M. 2017. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J. 310:41–62. doi: 10.1016/j.cej.2016.10.064.
  • Gloag ES, German GK, Stoodley P, Wozniak DJ. 2018. Viscoelastic properties of Pseudomonas aeruginosa variant biofilms. Sci Rep. 8:9691. doi: 10.1038/s41598-018-28009-5.
  • Gomes IB, Simões LC, Simões M. 2020. Influence of surface copper content on Stenotrophomonas maltophilia biofilm control using chlorine and mechanical stress. Biofouling. 36:1–13. doi: 10.1080/08927014.2019.1708334.
  • Gomes IB, Simoes M, Simoes LC. 2016. The effects of sodium hypochlorite against selected drinking water-isolated bacteria in planktonic and sessile states. Sci Total Environ. 565:40–48. doi: 10.1016/j.scitotenv.2016.04.136.
  • Gröschel MI, Meehan CJ, Barilar I, Diricks M, Gonzaga A, Steglich M, Conchillo-Solé O, Scherer I-C, Mamat U, Luz CF, et al. 2020. The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat Commun. 11:2044. doi: 10.1038/s41467-020-15123-0.
  • Guyot A, Turton JF, Garner D. 2013. Outbreak of Stenotrophomonas maltophilia on an intensive care unit. J Hosp Infect. 85:303–307. doi: 10.1016/j.jhin.2013.09.007.
  • Hallam NB, West JR, Forster CF, Powell JC, Spencer I. 2002. The decay of chlorine associated with the pipe wall in water distribution systems. Water Res. 36:3479–3488. doi: 10.1016/S0043-1354(02)00056-8.
  • Hemdan BA, El-Taweel GE, Goswami P, Pant D, Sevda S. 2021. The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: an overview of surveillance, outbreaks, and prevention. World J Microbiol Biotechnol. 37:36. doi: 10.1007/s11274-021-03008-3.
  • Horvat M, Pannuri A, Romeo T, Dogsa I, Stopar D. 2019. Viscoelastic response of Escherichia coli biofilms to genetically altered expression of extracellular matrix components. Soft Matter. 15:5042–5051. doi: 10.1039/c9sm00297a.
  • Jara J, Alarcón F, Monnappa AK, Santos JI, Bianco V, Nie P, Ciamarra MP, Canales Á, Dinis L, López-Montero I, et al. 2020. Self-adaptation of Pseudomonas fluorescens biofilms to hydrodynamic stress. Front Microbiol. 11:588884. doi: 10.3389/fmicb.2020.588884.
  • Jones WL, Sutton MP, McKittrick L, Stewart PS. 2011. Chemical and antimicrobial treatments change the viscoelastic properties of bacterial biofilms. Biofouling. 27:207–215. doi: 10.1080/08927014.2011.554977.
  • Kavanagh GM, Ross-Murphy SB. 1998. Rheological characterisation polymer gels. Prog Polym Sci. 23:533–562. doi: 10.1016/S0079-6700(97)00047-6.
  • Khan S, Beattie TK, Knapp CW. 2019. Rapid selection of antimicrobial-resistant bacteria in complex water systems by chlorine and pipe materials. Environ Chem Lett. 17:1367–1373. doi: 10.1007/s10311-019-00867-z.
  • Kuechler TC. 2009. Use of chlorinated isocyanurates for drinking water chlorination. Proc Water Environ Fed. 2009:799–806. doi: 10.2175/193864709793848356.
  • Långmark J, Storey MV, Ashbolt NJ, Stenström T-A. 2005. Biofilms in an urban water distribution system: measurement of biofilm biomass, pathogens and pathogen persistence within the Greater Stockholm area, Sweden. Water Sci Technol. 52:181–189. doi: 10.2166/wst.2005.0259.
  • Learbuch KLG, Smidt H, van der Wielen PWJJ. 2021. Influence of pipe materials on the microbial community in unchlorinated drinking water and biofilm. Water Res. 194:116922. doi: 10.1016/j.watres.2021.116922.
  • Lee H-J, Kim H-E, Kim MS, de Lannoy C-F, Lee C. 2020b. Inactivation of bacterial planktonic cells and biofilms by Cu(II)-activated peroxymonosulfate in the presence of chloride ion. Chem Eng J. 380:122468. doi: 10.1016/j.cej.2019.122468.
  • Lee J, Von Gunten U, Kim JH. 2020a. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol. 54:3064–3081. doi: 10.1021/acs.est.9b07082.
  • Li RA, McDonald JA, Sathasivan A, Khan SJ. 2019. Disinfectant residual stability leading to disinfectant decay and by-product formation in drinking water distribution systems: a systematic review. Water Res. 153:335–348. doi: 10.1016/j.watres.2019.01.020.
  • Li W, Tan Q, Zhou W, Chen J, Li Y, Wang F, Zhang J. 2020. Impact of substrate material and chlorine/chloramine on the composition and function of a young biofilm microbial community as revealed by high-throughput 16S rRNA sequencing. Chemosphere. 242:125310. doi: 10.1016/j.chemosphere.2019.125310.
  • Lieleg O, Caldara M, Baumgartel R, Ribbeck K. 2011. Mechanical robustness of Pseudomonas aeruginosa biofilms. Soft Matter. 7:3307–3314. doi: 10.1039/c0sm01467b.Mechanical.
  • Liu L, Xing X, Hu C, Wang H, Lyu L. 2019a. Effect of sequential UV/free chlorine disinfection on opportunistic pathogens and microbial community structure in simulated drinking water distribution systems. Chemosphere. 219:971–980. doi: 10.1016/j.chemosphere.2018.12.067.
  • Liu LZ, Xing XC, Hu C, Wang HB. 2019b. O3-BAC-Cl2 : a multi-barrier process controlling the regrowth of opportunistic waterborne pathogens in drinking water distribution systems. J Environ Sci. 76:142–153. doi: 10.1016/j.jes.2018.04.017.
  • Liu S, Gunawan C, Barraud N, Rice SA, Harry EJ, Amal R. 2016. Understanding, monitoring, and controlling biofilm growth in drinking water distribution systems. Environ Sci Technol. 50:8954–8976. doi: 10.1021/acs.est.6b00835.
  • Liu Y, Wang L, Dong Y, Peng W, Fu Y, Li Q, Fan Q, Wang Y, Wang Z. 2021. Current analytical methods for the determination of persulfate in aqueous solutions: a historical review. Chem Eng J. 416:129143. doi: 10.1016/j.cej.2021.129143.
  • Luo L-W, Wu Y-H, Yu T, Wang Y-H, Chen G-Q, Tong X, Bai Y, Xu C, Wang H-B, Ikuno N, et al. 2021. Evaluating method and potential risks of chlorine-resistant bacteria (CRB): a review. Water Res. 188:116474. doi: 10.1016/j.watres.2020.116474.
  • Ma X, Li G, Chen R, Yu Y, Tao H, Zhang G, Shi B. 2020. Revealing the changes of bacterial community from water source to consumers tap: a full-scale investigation in eastern city of China. J Environ Sci. 87:331–340. doi: 10.1016/j.jes.2019.07.017.
  • Maes S, Vackier T, Huu SN, Heyndrickx M, Steenackers H, Sampers I, Raes K, Verplaetse A, De Reu K. 2019. Occurrence and characterisation of biofilms in drinking water systems of broiler houses. BMC Microbiol. 19: doi: 10.1186/s12866-019-1451-5.
  • Meireles A, Ferreira C, Melo L, Simoes M. 2017. Comparative stability and efficacy of selected chlorine-based biocides against Escherichia coli in planktonic and biofilm states. Food Res Int. 102:511–518. doi: 10.1016/j.foodres.2017.09.033.
  • Menetrey Q, Sorlin P, Jumas-Bilak E, Chiron R, Dupont C, Marchandin H. 2021. Achromobacter xylosoxidans and Stenotrophomonas maltophilia: emerging pathogens well-armed for life in the cystic fibrosis patients’ lung. Genes. 12:610. doi: 10.3390/genes12050610.
  • Mezger TG. 2014. Applied rheology. Graz, Austria: Anton Paar GmbH.
  • National Toxicology Program (NTP). 1992. Toxicology and carcinogenesis studies of chlorinated water (CAS Nos. 7782-50-5 and 7681-52-9) and chloraminated water (CAS No. 10599-90-3) (deionized and charcoal-filtered) in F344/N Rats and B6C3F1 Mice (drinking water studies). Tech Rep Ser. 392:1–466.
  • Ng D-Q, Lin J-K, Lin Y-P. 2020. Lead release in drinking water resulting from galvanic corrosion in three-metal systems consisting of lead, copper and stainless steel. J Hazard Mater. 398:122936. doi: 10.1016/j.jhazmat.2020.122936.
  • NSF. 2018. Drinking water treatment chemicals – Health effects of trichloroisocyanuric acid. The Public Health Safety Organnization. [accessed 2020 Nov 22]. http://info.nsf.org/Certified/PwsChemicals/Listings.asp?ChemicalName=Trichloroisocyanuric+Acid&.
  • Oliveira IM, Gomes IB, Simoes LC, Simoes M. 2022. Chlorinated cyanurates and potassium salt of peroxymonosulphate as antimicrobial and antibiofilm agents for drinking water disinfection. Sci Total Environ. 811:152355. doi: 10.1016/j.scitotenv.2021.152355.
  • Pandit S, Fazilati M, Gaska K, Derouiche A, Nypelö T, Mijakovic I, Kádár R. 2020. The exo-polysaccharide component of extracellular matrix is essential for the viscoelastic properties of Bacillus subtilis biofilms. Int J Mol Sci. 21:6755. doi: 10.3390/ijms21186755.
  • Pichel N, Vivar M, Fuentes M. 2019. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. Chemosphere. 218:1014–1030. doi: 10.1016/j.chemosphere.2018.11.205.
  • Proctor CR, Hammes F. 2015. Drinking water microbiology - from measurement to management. Curr Opin Biotechnol. 33:87–94. doi: 10.1016/j.copbio.2014.12.014.
  • Rosalina I, Bhattacharya M. 2002. Dynamic rheological measurements and analysis of starch gels. Carbohydr Polym. 48:191–202. doi: 10.1016/S0144-8617(01)00235-1.
  • Rożej A, Cydzik-Kwiatkowska A, Kowalska B, Kowalski D. 2015. Structure and microbial diversity of biofilms on different pipe materials of a model drinking water distribution systems. World J Microbiol Biotechnol. 31:37–47. doi: 10.1007/s11274-014-1761-6.
  • Sharafimasooleh M, Rand JL, Walsh ME. 2016. Effect of high chloride concentrations on microbial regrowth in drinking water distribution systems. J Environ Eng. 142:1–7. doi: 10.1061/(ASCE)EE.1943-7870.0001027.
  • Simões LC, Simões M. 2013. Biofilms in drinking water: problems and solutions. RSC Adv. 3:2520–2533. doi: 10.1039/C2RA22243D.
  • Simões LC, Simões M, Oliveira R, Vieira MJ. 2007. Potential of the adhesion of bacteria isolated from drinking water to materials. J Basic Microbiol. 47:174–183. doi: 10.1002/jobm.200610224.
  • Simões LC, Simões M, Vieira MJ. 2010. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie Van Leeuwenhoek. 98:317–329. doi: 10.1007/s10482-010-9444-2.
  • Soto-Giron MJ, Rodriguez-R LM, Luo CW, Elk M, Ryu H, Hoelle J, Domingo JWS, Konstantinidis KT. 2016. Biofilms on hospital shower hoses: characterization and implications for nosocomial infections. Appl Environ Microbiol. 82:2872–2883. doi: 10.1128/AEM.03529-15.
  • Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD. 2017. Chemistry of persulfates in water and wastewater treatment: A review. Chem Eng J. 330:44–62. doi: 10.1016/j.cej.2017.07.132.
  • Wahman DG. 2018. Chlorinated cyanurates: review of water chemistry and associated drinking water implications. J Am Water Works Assoc. 110: E1–E15. doi: 10.1002/awwa.1086.
  • Wang H, Hu C, Zhang S, Liu L, Xing X. 2018. Effects of O3/Cl2 disinfection on corrosion and opportunistic pathogens growth in drinking water distribution systems. J Environ Sci. [Internet]. 73:38–46. doi: 10.1016/j.jes.2018.01.009.
  • Wang L, Wang L, Shi Y, Zhu J, Zhao B, Zhang Z, Ding G, Zhang H. 2022. Fabrication of Co3O4-Bi2O3-Ti catalytic membrane for efficient degradation of organic pollutants in water by peroxymonosulfate activation. J Colloid Interface Sci. 607:451–461. doi: 10.1016/j.jcis.2021.08.086.
  • World Health Organization (WHO). 2022. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. Geneva: WHO. Licence: CC BY-NC-SA 3.0 IGO.
  • Xing XC, Wang HB, Hu C, Liu LZ. 2018. Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems. Water Res. 139:168–176. doi: 10.1016/j.watres.2018.03.073.
  • Yan J, Moreau A, Khodaparast S, Perazzo A, Feng J, Fei C, Mao S, Mukherjee S, Košmrlj A, Wingreen NS, et al. 2018. Bacterial biofilm material properties enable removal and transfer by capillary peeling. Adv Mater. 30:e1804153. doi: 10.1002/adma.201804153.
  • Yan X, Lin T, Wang X, Zhang S, Zhou K. 2022. Effects of pipe materials on the characteristic recognition, disinfection byproduct formation, and toxicity risk of pipe wall biofilms during chlorination in water supply pipelines. Water Res. 210:117980. doi: 10.1016/j.watres.2021.117980.
  • Youenou B, Favre-Bonté S, Bodilis J, Brothier E, Dubost A, Muller D, Nazaret S. 2015. Comparative genomics of environmental and clinical Stenotrophomonas maltophilia strains with different antibiotic resistance profiles. Genome Biol Evol. 7:2484–2505. doi: 10.1093/gbe/evv161.
  • Zainulabid UA, Siew SW, Musa SM, Soffian SN, Periyasamy P, Ahmad HF. 2023. Whole-genome sequence of a Stenotrophomonas maltophilia isolate from tap water in an intensive care unit. Microbiol Resour Announc. 12:e0099522. doi: 10.1128/mra.00995-22.
  • Zhao X, Jia X, Li H, Zhang H, Zhou X, Zhou Y, Wang H, Yin L, Wågberg T, Hu G. 2022. Efficient degradation of health-threatening organic pollutants in water by atomically dispersed cobalt-activated peroxymonosulfate. Chem Eng J. 450:138098. doi: 10.1016/j.cej.2022.138098.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.