Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 8
272
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Indole-3-acetic acid impacts biofilm formation and virulence production of Pseudomonas aeruginosa

, , , &
Pages 800-815 | Received 03 Jan 2023, Accepted 06 Oct 2023, Published online: 18 Oct 2023

References

  • Algammal AM, Mabrok M, Sivaramasamy E, Youssef FM, Atwa MH, El-Kholy AW, Hetta HF, Hozzein WN. 2020. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprL and toxA virulence genes and bla TEM, bla CTX-M, and tetA antibiotic-resistance genes. Sci Rep. 10:15961. doi: 10.1038/s41598-020-72264-4.
  • Alhede M, Kragh KN, Qvortrup K, Allesen-Holm M, van Gennip M, Christensen LD, Jensen PØ, Nielsen AK, Parsek M, Wozniak D, et al. 2011. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS One. 6:e27943. doi: 10.1371/journal.pone.0027943.
  • Altaf M, Zeyad MT, Hashmi MA, Manoharadas S, Hussain SA, Ali Abuhasil MS, Almuzaini MAM. 2021. Effective inhibition and eradication of pathogenic biofilms by titanium dioxide nanoparticles synthesized using Carum copticum extract. RSC Adv. 11:19248–19257. doi: 10.1039/d1ra02876f.
  • Amer MA, Wasfi R, Attia AS, Ramadan MA. 2021. Indole derivatives obtained from Egyptian Enterobacter sp. soil isolates exhibit antivirulence activities against uropathogenic Proteus mirabilis. Antibiotics (Basel). 10:363. doi: 10.3390/antibiotics10040363.
  • Anju VT, Busi S, Mohan MS, Ranganathan S, Ampasala DR, Kumavath R, Dyavaiah M. 2022. In vivo, in vitro and molecular docking studies reveal the anti-virulence property of hispidulin against Pseudomonas aeruginosa through the modulation of quorum sensing. Int Biodeterior Biodegradation. 174:105487. doi: 10.1016/j.ibiod.2022.105487.
  • Boya BR, Lee JH, Lee J. 2022. Antibiofilm and Antimicrobial Activities of Chloroindoles Against Uropathogenic Escherichia coli. Front Microbiol. 13:872943. doi: 10.3389/fmicb.2022.872943.
  • Burley SK, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow GV, Christie CH, Dalenberg K, Di Costanzo L, Duarte JM, et al. 2021. RCSB Protein Data Bank: powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 49:D437–D451. doi: 10.1093/nar/gkaa1038.
  • Cascioferro S, Carbone D, Parrino B, Pecoraro C, Giovannetti E, Cirrincione G, Diana P. 2021. Therapeutic strategies to counteract antibiotic resistance in MRSA biofilm-associated infections. ChemMedChem. 16:65–80. doi: 10.1002/cmdc.202000677.
  • Chen L, Qian PY. 2017. Review on molecular mechanisms of antifouling compounds: an update since 2012. Mar Drugs. 15:264. doi: 10.3390/md15090264.
  • Chimerel C, Murray AJ, Oldewurtel ER, Summers DK, Keyser UF. 2013. The effect of bacterial signal indole on the electrical properties of lipid membranes. Chemphyschem. 14:417–423. doi: 10.1002/cphc.201200793.
  • Chitra G, Franklin DS, Sudarsan S, Sakthivel M, Guhanathan S. 2017. Indole-3-acetic acid/diol based pH-sensitive biological macromolecule for antibacterial, antifungal and antioxidant applications. Int J Biol Macromol. 95:363–375. doi: 10.1016/j.ijbiomac.2016.11.068.
  • CLSI. 2016. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Wayne. www.clsi.org.
  • Coban AY, Darka O, Fisgin NT, Cihan CC, Bilgin K, Akgunes A, Guven T, Dokuzoguz B, Birinci A, Durupinar B. 2005. The resazurin microplate method for rapid detection of vancomycin resistance in enterococci. J Chemother. 17:361–366. doi: 10.1179/joc.2005.17.4.361.
  • Cui B, Chen X, Guo Q, Song S, Wang M, Liu J, Deng Y. 2022. The cell–cell communication signal indole controls the physiology and interspecies communication of Acinetobacter baumannii. Microbiol Spectr. 10:e0102722. doi: 10.1128/spectrum.01027-22.
  • Dallakyan S, Olson A. 2015. Participation in global governance: coordinating “the voices of those most affected by food insecurity. Global Food Security Governance. 1263:1–11. doi: 10.1007/978-1-4939-2269-7.
  • Díaz MA, González SN, Alberto MR, Arena ME. 2020. Human probiotic bacteria attenuate Pseudomonas aeruginosa biofilm and virulence by quorum-sensing inhibition. Biofouling. 36:597–609. doi: 10.1080/08927014.2020.1783253.
  • Feng K, Ni C, Yu L, Zhou W, Li X. 2019. Synthesis and antifouling evaluation of indole derivatives. Ecotoxicol Environ Saf. 182:109423. doi: 10.1016/j.ecoenv.2019.109423.
  • Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT. 2006. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 49:6177–6196. doi: 10.1021/jm051256o.
  • Girennavar B, Cepeda ML, Soni KA, Vikram A, Jesudhasan P, Jayaprakasha GK, Pillai SD, Patil BS. 2008. Grapefruit juice and its furocoumarins inhibits autoinducer signaling and biofilm formation in bacteria. Int J Food Microbiol. 125:204–208. doi: 10.1016/j.ijfoodmicro.2008.03.028.
  • Gomila A, Carratalà J, Eliakim-Raz N, Shaw E, Wiegand I, Vallejo-Torres L, Gorostiza A, Vigo JM, Morris S, Stoddart M, Combacte Magnet WP5 Rescuing Study Group and Study Sites, et al. 2018. Risk factors and prognosis of complicated urinary tract infections caused by Pseudomonas aeruginosa in hospitalized patients: a retrospective multicenter cohort study. Infect Drug Resist. 11:2571–2581. doi: 10.2147/IDR.S185753.
  • Guo W, Yao S, Sun P, Yang T, Tang C, Zheng M, Ye Y, Meng L. 2020. Discovery and characterization of natural products as novel indoleamine 2,3-dioxygenase 1 inhibitors through high-throughput screening. Acta Pharmacol Sin. 41:423–431. doi: 10.1038/s41401-019-0246-4.
  • Halgren TA. 2009. Identifying and characterizing binding sites and assessing druggability. J Chem Inf Model. 49:377–389. doi: 10.1021/ci800324m.
  • Hamidi S, Monajjemzadeh F, Siahi‐Shadbad M, Khatibi SA, Farjami A. 2023. Antibacterial activity of natural polymer gels and potential applications without synthetic antibiotics. Polymer Engineering & Sci. 63:5–21. doi: 10.1002/pen.26184.
  • Han TH, Lee J-H, Cho MH, Wood TK, Lee J. 2011. Environmental factors affecting indole production in Escherichia coli. Res Microbiol. 162:108–116. doi: 10.1016/j.resmic.2010.11.005.
  • Han JT, Li DY, Zhang MY, Yu XQ, Jia XX, Xu H, Yan X, Jia WJ, Niu S, Kempher ML, et al. 2021. EmhR is an indole-sensing transcriptional regulator responsible for the indole-induced antibiotic tolerance in Pseudomonas fluorescens. Environ Microbiol. 23:2054–2069. doi: 10.1111/1462-2920.15354.
  • Hazan R, Que Y-A, Maura D, Rahme LG. 2012. A method for high throughput determination of viable bacteria cell counts in 96-well plates. BMC Microbiol. 12:259. doi: 10.1186/1471-2180-12-259.
  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P, et al. 2003. Attenuation of PA by QSI. Embo J. 22:3803–3815. doi: 10.1093/emboj/cdg366.
  • Hu P, Huang P, Chen MW. 2013. Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase A activity. Arch Oral Biol. 58:1343–1348. doi: 10.1016/j.archoralbio.2013.05.004.
  • Jakobsen TH, Van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, et al. 2012. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother. 56:2314–2325. doi: 10.1128/AAC.05919-11.
  • Kumar P, Jin‐Hyung L, Lee J. 2021. Diverse roles of microbial indole compounds in eukaryotic systems. Biol Rev Camb Philos Soc. 96:2522–2545. doi: 10.1111/brv.12765.
  • Kumar A, Sperandio V. 2019. Indole signaling at the host-microbiota-pathogen interface. mBio. 10:e01031-19. doi: 10.1128/mBio.01031-19.
  • Kung VL, Ozer EA, Hauser AR. 2010. The accessory genome of Pseudomonas aeruginosa. Microbiol Mol Biol Rev. 74:621–641. doi: 10.1128/mmbr.00027-10.
  • Kunz Coyne AJ, El Ghali A, Holger D, Rebold N, Rybak MJ. 2022. Therapeutic strategies for emerging multidrug-resistant Pseudomonas aeruginosa. Infect Dis Ther. 11:661–682. doi: 10.1007/s40121-022-00591-2.
  • Ledala N, Malik M, Rezaul K, Paveglio S, Provatas A, Kiel A, Caimano M, Zhou Y, Lindgren J, Krasulova K, et al. 2022. Bacterial indole as a multifunctional regulator of Klebsiella oxytoca complex enterotoxicity. mBio. 13:e0375221. doi: 10.1128/mbio.03752-21.
  • Lee J, Attila C, Cirillo SLG, Cirillo JD, Wood TK. 2009. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol. 2:75–90. doi: 10.1111/j.1751-7915.2008.00061.x.
  • Lee JH, Cho HS, Kim Y, Kim JA, Banskota S, Cho MH, Lee J. 2013. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus aureus. Appl Microbiol Biotechnol. 97:4543–4552. doi: 10.1007/s00253-012-4674-z.
  • Lee JH, Cho MH, Lee J. 2011. 3-Indolylacetonitrile Decreases Escherichia coli O157: h 7 Biofilm Formation and Pseudomonas aeruginosa Virulence. Environ Microbiol. 13:62–73. doi: 10.1111/j.1462-2920.2010.02308.x.
  • Lee J, Jayaraman A, Wood TK. 2007. Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiol. 7:15. doi: 10.1186/1471-2180-7-42.
  • Lee JH, Kim YG, Kim CJ, Lee JC, Cho MH, Lee J. 2012. Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157: H7 biofilm formation. Appl Microbiol Biotechnol. 96:1071–1078. doi: 10.1007/s00253-012-3881-y.
  • Lee K, Yoon SS. 2017. Pseudomonas aeruginosa biofilm, a programmed bacterial life for fitness. J Microbiol Biotechnol. 27:1053–1064. doi: 10.4014/jmb.1611.11056.
  • Limoli DH, Jones CJ, Wozniak DJ. 2015. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr. 3:223–247. doi: 10.1128/microbiolspec.MB-0011-2014.
  • Lin L, Tan RX. 2011. Cross-kingdom actions of phytohormones: a functional scaffold exploration. Chem Rev. 111:2734–2760. doi: 10.1021/cr100061j.
  • Lund-Palau H, Turnbull AR, Bush A, Bardin E, Cameron L, Soren O, Wierre-Gore N, Alton EWFW, Bundy JG, Connett G, et al. 2016. Pseudomonas aeruginosa infection in cystic fibrosis: pathophysiological mechanisms and therapeutic approaches. Expert Rev Respir Med. 10:685–697. doi: 10.1080/17476348.2016.1177460.
  • Madhavi Sastry G, Adzhigirey M, Day T, Annabhimoju R, Sherman W. 2013. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 27:221–234. doi: 10.1007/s10822-013-9644-8.
  • Mahmoud E, Hayallah AM, Kovacic S, Abdelhamid D, Abdel-Aziz M. 2022. Recent progress in biologically active indole hybrids: a mini review. Pharmacol Rep. 74:570–582. doi: 10.1007/s43440-022-00370-3.
  • Mahto KU, Kumari S, Das S. 2022. Unraveling the complex regulatory networks in biofilm formation in bacteria and relevance of biofilms in environmental remediation. Crit Rev Biochem Mol Biol. 57:305–332. doi: 10.1080/10409238.2021.2015747.
  • Manoharan RK, Lee JH, Lee J. 2018. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation. Microb Biotechnol. 11:1060–1069. doi: 10.1111/1751-7915.13268.
  • Mauline L, Gressier M, Roques C, Hammer P, Ribeiro SJL, Caiut JMA, Menu MJ. 2013. Bifunctional silica nanoparticles for the exploration of biofilms of Pseudomonas aeruginosa. Biofouling. 29:775–788. doi: 10.1080/08927014.2013.798866.
  • Mojicevic M, D'Agostino PM, Nikodinovic-Runic J, Vasiljevic B, Gulder TAM, Vojnovic S. 2019. Antifungal potential of bacterial rhizosphere isolates associated with three ethno-medicinal plants (poppy, chamomile, and nettle). Int Microbiol. 22:343–353. doi: 10.1007/s10123-019-00054-8.
  • Moradali MF, Ghods S, Rehm BHA. 2017. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 7:39. doi: 10.3389/fcimb.2017.00039.
  • Ni C, Chen G, Li X, Zhao H, Yu L. 2021. Synthesis and application of indole esters derivatives containing acrylamide group as antifouling agents. Chem Phys Lett. 781:138994. doi: 10.1016/j.cplett.2021.138994.
  • Oliphant K, Allen-Vercoe E. 2019. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 7:91. doi: 10.1186/s40168-019-0704-8.
  • Oliver A, Mulet X, López-Causapé C, Juan C. 2015. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist Updat. 21-22:41–59. doi: 10.1016/j.drup.2015.08.002.
  • Oluyombo O, Penfold CN, Diggle SP. 2019. Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-pyocins. mBio. 10:1–13. doi: 10.1128/mBio.01828-18.
  • Paczkowski JE, Mukherjee S, McCready AR, Cong J-P, Aquino CJ, Kim H, Henke BR, Smith CD, Bassler BL. 2017. Flavonoids Suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J Biol Chem. 292:4064–4076. doi: 10.1074/jbc.M116.770552.
  • Pandey S, Kant S, Khawary M, Tripathi D. 2022. Macrophages in microbial pathogenesis: commonalities of defense evasion mechanisms. Infect Immun. 90:e0029121. doi: 10.1128/iai.00291-21.
  • Parai D, Banerjee M, Dey P, Chakraborty A, Islam E, Mukherjee SK. 2018. Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling. 34:320–334. doi: 10.1080/08927014.2018.1437910.
  • Paraszkiewicz K, Moryl M, Płaza G, Bhagat D, K. Satpute S, Bernat P. 2021. Surfactants of microbial origin as antibiofilm agents. Int J Environ Health Res. 31:401–420. doi: 10.1080/09603123.2019.1664729.
  • Porter M, Davidson FA, MacPhee CE, Stanley-Wall NR. 2022. Systematic microscopical analysis reveals obligate synergy between extracellular matrix components during Bacillus subtilis colony biofilm development. Biofilm. 4:100082. doi: 10.1016/j.bioflm.2022.100082.
  • Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. 2022. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Sig Transduct Target Ther. 7:199. doi: 10.1038/s41392-022-01056-1.
  • Sakuragi Y, Kolter R. 2007. Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol. 189:5383–5386. doi: 10.1128/JB.00137-07.
  • Salama ES, Kabra AN, Ji MK, Kim JR, Min B, Jeon BH. 2014. Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresour Technol. 172:97–103. doi: 10.1016/j.biortech.2014.09.002.
  • Salini R, Santhakumari S, Veera Ravi A, Karutha Pandian S. 2019. Synergistic antibiofilm efficacy of undecanoic acid and auxins against quorum sensing mediated biofilm formation of luminescent Vibrio harveyi. Aquaculture. 498:162–170. doi: 10.1016/j.aquaculture.2018.08.038.
  • Sandasi M, Leonard CM, Viljoen AM. 2010. The in vitro antibiofilm activity of selected culinary herbs and medicinal plants against Listeria monocytogenes. Lett Appl Microbiol. 50:30–35. doi: 10.1111/j.1472-765X.2009.02747.x.
  • Sethupathy S, Sathiyamoorthi E, Kim YG, Lee JH, Lee J. 2020. Antibiofilm and antivirulence properties of indoles against Serratia marcescens. Front Microbiol. 11:584812. doi: 10.3389/fmicb.2020.584812.
  • Shen J, Yang L, You K, Chen T, Su Z, Cui Z, Wang M, Zhang W, Liu B, Zhou K, et al. 2022. Indole-3-acetic acid alters intestinal microbiota and alleviates ankylosing spondylitis in mice. Front Immunol. 13:762580. doi: 10.3389/fimmu.2022.762580.
  • Shen DK, Filopon D, Chaker H, Boullanger S, Derouazi M, Polack B, Toussaint B. 2008. High-cell-density regulation of the Pseudomonas aeruginosa type III secretion system: implications for tryptophan catabolites. Microbiology (Reading). 154:2195–2208. doi: 10.1099/mic.0.2007/013680-0.
  • Smith RS, Iglewski BH. 2003. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol. 6:56–60. doi: 10.1016/S1369-5274(03)00008-0.
  • Souza CF, Baldissera MD, Descovi SN, Zeppenfeld CC, Verdi CM, Santos RCV, da Silva AS, Baldisserotto B. 2019. Grape pomace flour alleviates Pseudomonas aeruginosa-induced hepatic oxidative stress in grass carp by improving antioxidant defense. Microb Pathog. 129:271–276. doi: 10.1016/j.micpath.2019.02.024.
  • Srinivasarao S, Nizalapur S, Yu TT, Wenholz DS, Trivedi P, Ghosh B, Rangan K, Kumar N, Gowri Chandra Sekhar KV. 2018. Design, synthesis and biological evaluation of triazole-containing 2-phenylindole and salicylic acid as quorum sensing inhibitors against Pseudomonas aeruginosa. ChemistrySelect. 3:9170–9180. doi: 10.1002/slct.201801622.
  • Thomas J, Thanigaivel S, Vijayakumar S, Acharya K, Shinge D, Seelan TSJ, Mukherjee A, Chandrasekaran N. 2014. Pathogenecity of Pseudomonas aeruginosa in Oreochromis mossambicus and treatment using lime oil nanoemulsion. Colloids Surf B Biointerfaces. 116:372–377. doi: 10.1016/j.colsurfb.2014.01.019.
  • Venturi V. 2006. Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev. 30:274–291. doi: 10.1111/j.1574-6976.2005.00012.x.
  • Worthington RJ, Richards JJ, Melander C. 2012. Small molecule control of bacterial biofilms. Org Biomol Chem. 10:7457–7474. doi: 10.1039/c2ob25835h.
  • Xiroudaki S, Sabbatini S, Pecoraro C, Cascioferro S, Diana P, Wauthoz N, Antognelli C, Monari C, Giovagnoli S, Schoubben A. 2023. Development of a new indole derivative dry powder for inhalation for the treatment of biofilm-associated lung infections. Int J Pharm. 631:122492. doi: 10.1016/j.ijpharm.2022.122492.
  • Xu A, Zhang X, Wang T, Xin F, Ma LZ, Zhou J, Dong W, Jiang M. 2021. Rugose small colony variant and its hyper-biofilm in Pseudomonas aeruginosa: adaption, evolution, and biotechnological potential. Biotechnol Adv. 53:107862. doi: 10.1016/j.biotechadv.2021.107862.
  • Yang Q, Pande GSJ, Wang Z, Lin B, Rubin RA, Vora GJ, Defoirdt T. 2017. Indole signalling and (micro)algal auxins decrease the virulence of Vibrio campbellii, a major pathogen of aquatic organisms. Environ Microbiol. 19:1987–2004. doi: 10.1111/1462-2920.13714.
  • Yang C, Sun W, Liu S, Xia C. 2015. Comparative effects of indole derivatives as antifouling agents on the growth of two marine diatom species. Chem Ecol. 31:299–307. doi: 10.1080/02757540.2015.1022536.
  • Zarkan A, Liu J, Matuszewska M, Gaimster H, Summers DK. 2020. Local and universal action: the paradoxes of indole signalling in bacteria. Trends Microbiol. 28:566–577. doi: 10.1016/j.tim.2020.02.007.
  • Zhang C, Fu Q, Shao K, Liu L, Ma X, Zhang F, Zhang X, Meng L, Yan CZ, Zhao X. 2022. Indole-3-acetic acid improves the hepatic mitochondrial respiration defects by PGC1a up-regulation. Cell Signal. 99:110442. doi: 10.1016/j.cellsig.2022.110442.
  • Zhang W, Yamasaki R, Song S, Wood TK. 2019. Interkingdom signal indole inhibits Pseudomonas aeruginosa persister cell waking. J Appl Microbiol. 127:1768–1775. doi: 10.1111/jam.14434.
  • Zhang S, Yang Q, Fu S, Janssen CR, Eggermont M, Defoirdt T. 2022. Indole decreases the virulence of the bivalve model pathogens Vibrio tasmaniensis LGP32 and Vibrio crassostreae J2-9. Sci Rep. 12:5749. doi: 10.1038/s41598-022-09799-1.
  • Zutz C, Bacher M, Parich A, Kluger B, Gacek-Matthews A, Schuhmacher R, Wagner M, Rychli K, Strauss J. 2016. Valproic acid induces antimicrobial compound production in Doratomyces microspores. Front Microbiol. 7:510. doi: 10.3389/fmicb.2016.00510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.