Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 39, 2023 - Issue 8
173
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Surface properties of membrane materials and their role in cell adhesion and biofilm formation of microalgae

, ORCID Icon & ORCID Icon
Pages 879-895 | Received 29 May 2023, Accepted 28 Oct 2023, Published online: 15 Nov 2023

References

  • Ahmad MT, Shariff M, Md Yusoff F, Goh YM, Banerjee S. 2020. Applications of microalga Chlorella vulgaris in aquaculture. Rev Aquac. 12:328–346. doi: 10.1111/raq.12320.
  • Al-Ansari MM, Al-Humaid L, Al-Dahmash ND, Aldawsari M. 2023. Assessing the benefits of Chlorella vulgaris microalgal biodiesel for internal combustion engines: energy and exergy analyses. Fuel. 344:128055. doi: 10.1016/j.fuel.2023.128055.
  • Ambati RR, Gogisetty D, Aswathanarayana RG, Ravi S, Bikkina PN, Bo L, Yuepeng S. 2019. Industrial potential of carotenoid pigments from microalgae: current trends and future prospects. Crit Rev Food Sci Nutr. 59:1880–1902. doi: 10.1080/10408398.2018.1432561.
  • Andronic L, Mamedov D, Cazan C, Popa M, Chifiriuc MC, Allaniyazov A, Palencsar S, Karazhanov SZ. 2022. Cerium oxide thin films: synthesis, characterization, photocatalytic activity and influence on microbial growth. Biofouling. 38:865–875. doi: 10.1080/08927014.2022.2144264.
  • Aydin S, Fakhri H, Tavsanli N. 2023. Bioaugmentation of the green alga to enhance biogas production in an anaerobic hollow-fiber membrane bioreactor. Biofouling. 39:349–358. doi: 10.1080/08927014.2023.2184689.
  • Benedetti M, Vecchi V, Barera S, Dall’Osto L. 2018. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb Cell Fact. 17:173. doi: 10.1186/s12934-018-1019-3.
  • Cheah YT, Chan DJC. 2021. Physiology of microalgal biofilm: a review on prediction of adhesion on substrates. Bioengineered. 12:7577–7599. doi: 10.1080/21655979.2021.1980671.
  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. 2011. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 102:71–81. doi: 10.1016/j.biortech.2010.06.159.
  • China Environmental Protection Agency [CEPA]. 2002. Monitoring and analysis methods for water and wastewater. Beijing: China Environmental Science Press.
  • Choi HJ, Lee SM. 2015. Effect of the N/P ratio on biomass productivity and nutrient removal from municipal wastewater. Bioprocess Biosyst Eng. 38:761–766. doi: 10.1007/s00449-014-1317-z.
  • Christenson L. 2011. Algal biofilm production and harvesting system for wastewater treatment with biofuels by-products [master’s thesis]. Logan (UT): Utah State University.
  • Cui Y, Yuan W. 2013. Thermodynamic modeling of algal cell–solid substrate interactions. Appl Energy. 112:485–492. doi: 10.1016/j.apenergy.2013.03.036.
  • Dalirian N, Najafabadi HA, Movahedirad S. 2021. Surface attached cultivation and filtration of microalgal biofilm in a ceramic substrate photobioreactor. Algal Res. 55:102239. doi: 10.1016/j.algal.2021.102239.
  • Devi ND, Tiwari R, Goud VV. 2023. Cultivating Scenedesmus sp. on substrata coated with cyanobacterial-derived extracellular polymeric substances for enhanced biomass productivity: a novel harvesting approach. Biomass Conv Bioref. 13:2971–2983. doi: 10.1007/s13399-021-01432-x.
  • Dhanumalayan E, Joshi GM. 2018. Performance properties and applications of polytetrafluoroethylene (PTFE): a review. Adv Compos Hybrid Mater. 1:247–268. doi: 10.1007/s42114-018-0023-8.
  • Fakhri H, Arabacı DN, Ünlü İD, Yangin-Gomec C, Ovez S, Aydin S. 2021. Addition of Trichocladium canadense to an anaerobic membrane bioreactor: evaluation of the microbial composition and reactor performance. Biofouling. 37:711–723. doi: 10.1080/08927014.2021.1949002.
  • Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol. 8:623–633. doi: 10.1038/nrmicro2415.
  • Gargouch N, Touchard R, Marec H, Mouget JL, Pruvost J, Massé A. 2022. Submerged membrane photobioreactor for the cultivation of Haslea ostrearia and the continuous extraction of extracellular marennine. Bioresour Technol. 350:126922. doi: 10.1016/j.biortech.2022.126922.
  • Gaudy E, Wolfe RS. 1962. Composition of an extracellular polysaccharide produced by Sphaerotilus natans. Appl Microbiol. 10:200–205. doi: 10.1128/am.10.3.200-205.1962.
  • Genin SN, Aitchison JS, Allen DG. 2014. Design of algal film photobioreactors: material surface energy effects on algal film productivity, colonization and lipid content. Bioresour Technol. 155:136–143. doi: 10.1016/j.biortech.2013.12.060.
  • George B, Pancha I, Desai C, Chokshi K, Paliwal C, Ghosh T, Mishra S. 2014. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus–a potential strain for bio-fuel production. Bioresour Technol. 171:367–374. doi: 10.1016/j.biortech.2014.08.086.
  • Gross MA. 2015. Development and optimization of biofilm based algal cultivation [dissertation]. Ames (IA): Iowa State University.
  • Guo C, Duan D, Sun Y, Han Y, Zhao S. 2019. Enhancing Scenedesmus obliquus biofilm growth and CO2 fixation in a gas-permeable membrane photobioreactor integrated with additional rough surface. Algal Res. 43:101620. doi: 10.1016/j.algal.2019.101620.
  • Himma NF, Anisah S, Prasetya N, Wenten IG. 2016. Advances in preparation, modification, and application of polypropylene membrane. J Polym Eng. 36:329–362. doi: 10.1515/polyeng-2015-0112.
  • Hoshiba T, Yoshikawa C, Sakakibara K. 2018. Characterization of initial cell adhesion on charged polymer substrates in serum-containing and serum-free media. Langmuir. 34:4043–4051. doi: 10.1021/acs.langmuir.8b00233.
  • Huang Y, Zheng Y, Li J, Liao Q, Fu Q, Xia A, Fu J, Sun Y. 2018. Enhancing microalgae biofilm formation and growth by fabricating microgrooves onto the substrate surface. Bioresour Technol. 261:36–43. doi: 10.1016/j.biortech.2018.03.139.
  • Hwang JH, Cicek N, Oleszkiewicz JA. 2010. Achieving biofilm control in a membrane biofilm reactor removing total nitrogen. Water Res. 44:2283–2291. doi: 10.1016/j.watres.2009.12.022.
  • Irving TE, Allen DG. 2011. Species and material considerations in the formation and development of microalgal biofilms. Appl Microbiol Biotechnol. 92:283–294. doi: 10.1007/s00253-011-3341-0.
  • Ismail MF, Islam MA, Khorshidi B, Tehrani-Bagha A, Sadrzadeh M. 2022. Surface characterization of thin-film composite membranes using contact angle technique: review of quantification strategies and applications. Adv Colloid Interface Sci. 299:102524. doi: 10.1016/j.cis.2021.102524.
  • Ji C, Zhou H, Deng S, Chen K, Dong X, Xu X, Cheng L. 2021. Insight into the adhesion propensities of extracellular polymeric substances (EPS) on the abiotic surface using XDLVO theory. J Environ Chem Eng. 9:106563. doi: 10.1016/j.jece.2021.106563.
  • Johansen MN. 2012. Microalgae: biotechnology, microbiology, and energy. New York (NY): Nova Science Publishers.
  • Joshi M, Adak B, Butola BS. 2018. Polyurethane nanocomposite based gas barrier films, membranes and coatings: a review on synthesis, characterization and potential applications. Prog Mater Sci. 97:230–282. doi: 10.1016/j.pmatsci.2018.05.001.
  • Kesaano M. 2015. Characterization and performance of algal biofilms for wastewater treatment and industrial applications [dissertation]. Logan (UT): Utah State University.
  • Lee SH, Oh HM, Jo BH, Lee SA, Shin SY, Kim HS, Lee SH, Ahn CY. 2014. Higher biomass productivity of microalgae in an attached growth system, using wastewater. J Microbiol Biotechnol. 24:1566–1573. doi: 10.4014/jmb.1406.06057.
  • Liao Y, Fatehi P, Liao B. 2023. Microalgae cell adhesions on hydrophobic membrane substrates using quartz crystal microbalance with dissipation. Colloids Surf B Biointerfaces. 230:113514. [accessed 2023 Aug 12] [ doi: 10.1016/j.colsurfb.2023.113514.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall R. 1951. Protein measurement with the Folin phenol reagent. J Biol Chem. 193:265–275. doi: 10.1016/S0021-9258(19)52451-6.
  • Ma K, Chung TS, Good RJ. 1998. Surface energy of thermotropic liquid crystalline polyesters and polyesteramide. J Polym Sci B Polym Phys. 36:2327–2337. doi: 10.1002/(SICI)1099-0488(19980930)36:13<2327::AID-POLB8>3.0.CO;2-P.
  • Mantzorou A, Ververidis F. 2019. Microalgal biofilms: a further step over current microalgal cultivation techniques. Sci Total Environ. 651:3187–3201. doi: 10.1016/j.scitotenv.2018.09.355.
  • Matho C, Schwarzenberger K, Eckert K, Keshavarzi B, Walther T, Steingroewer J, Krujatz F. 2019. Bio-compatible flotation of Chlorella vulgaris: study of zeta potential and flotation efficiency. Algal Res. 44:101705. doi: 10.1016/j.algal.2019.101705.
  • Ozkan A, Berberoglu H. 2011. Adhesion of Chlorella vulgaris on hydrophilic and hydrophobic surfaces. Proceedings of ASME 2011 International Mechanical Engineering Congress and Exposition; Nov 11–17; Denver. New York: American Society of Mechanical Engineers. 169–178. doi: 10.1115/IMECE2011-64133.
  • Ozkan A, Berberoglu H. 2013a. Adhesion of algal cells to surfaces. Biofouling. 29:469–482. doi: 10.1080/08927014.2013.782397.
  • Ozkan A, Berberoglu H. 2013b. Cell to substratum and cell to cell interactions of microalgae. Colloids Surf B Biointerfaces. 112:302–309. doi: 10.1016/j.colsurfb.2013.08.007.
  • Ozkan A, Berberoglu H. 2013c. Physico-chemical surface properties of microalgae. Colloids Surf B Biointerfaces. 112:287–293. doi: 10.1016/j.colsurfb.2013.08.001.
  • Parreira P, Magalhães A, Gonçalves IC, Gomes J, Vidal R, Reis CA, Leckband DE, Martins MCL. 2011. Effect of surface chemistry on bacterial adhesion, viability, and morphology. J Biomed Mater Res A. 99:344–353. doi: 10.1002/jbm.a.33178.
  • Podola B, Li T, Melkonian M. 2017. Porous substrate bioreactors: a paradigm shift in microalgal biotechnology? Trends Biotechnol. 35:121–132. doi: 10.1016/j.tibtech.2016.06.004.
  • Posten C, Chen SF. 2016. Microalgae biotechnology. New York (NY): Springer.
  • Pugazhendhi A, Nagappan S, Bhosale RR, Tsai PC, Natarajan S, Devendran S, Al-Haj L, Ponnusamy VK, Kumar G. 2020. Various potential techniques to reduce the water footprint of microalgal biomass production for biofuel—a review. Sci Total Environ. 749:142218. doi: 10.1016/j.scitotenv.2020.142218.
  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology. 111:1–61. doi: 10.1099/00221287-111-1-1.
  • Rudawska A, Jacniacka E. 2018. Evaluating uncertainty of surface free energy measurement by the van Oss-Chaudhury-good method. Int J Adhes Adhes. 82:139–145. doi: 10.1016/j.ijadhadh.2018.01.006.
  • Sekar R, Nandakumar K, Venugopalan VP, Nair KVK, Rao VNR. 1998. Spatial variation in microalgal colonization on hard surfaces in a lentic freshwater environment. Biofouling. 13:177–195. doi: 10.1080/08927019809378380.
  • Sekar R, Venugopalan VP, Satpathy KK, Nair KVK, Rao VNR. 2004. Laboratory studies on adhesion of microalgae to hard substrates. Hydrobiologia. 512:109–116. doi: 10.1023/B:HYDR.0000020315.40349.38.
  • Shakiba M, Rezvani Ghomi E, Khosravi F, Jouybar S, Bigham A, Zare M, Abdouss M, Moaref R, Ramakrishna S. 2021. Nylon—a material introduction and overview for biomedical applications. Polymers for Advanced Techs. 32:3368–3383. doi: 10.1002/pat.5372.
  • Shen Y, Zhang H, Xu X, Lin X. 2015. Biofilm formation and lipid accumulation of attached culture of Botryococcus braunii. Bioprocess Biosyst Eng. 38:481–488. doi: 10.1007/s00449-014-1287-1.
  • Shen Y, Zhu W, Chen C, Nie Y, Lin X. 2016. Biofilm formation in attached microalgal reactors. Bioprocess Biosyst Eng. 39:1281–1288. doi: 10.1007/s00449-016-1606-9.
  • Shit SC, Shah P. 2013. A review on silicone rubber. Natl Acad Sci Lett. 36:355–365. doi: 10.1007/s40009-013-0150-2.
  • Sun Y, Duan D, Chang H, Guo C. 2020. Optimizing light distributions in a membrane photobioreactor via optical fibers to enhance CO2 photobiochemical conversion by a Scenedesmus obliquus biofilm. Ind Eng Chem Res. 59:21654–21662. doi: 10.1021/acs.iecr.0c03854.
  • Talluri SN, Winter RM, Salem DR. 2020. Conditioning film formation and its influence on the initial adhesion and biofilm formation by a cyanobacterium on photobioreactor materials. Biofouling. 36:183–199. doi: 10.1080/08927014.2020.1748186.
  • Tang J, Liu B, Gao L, Wang W, Liu T, Su G. 2021. Impacts of surface wettability and roughness of styrene-acrylic resin films on adhesion behavior of microalgae Chlorella sp. Colloids Surf B Biointerfaces. 199:111522. doi: 10.1016/j.colsurfb.2020.111522.
  • Taşkan B, Hasar H, Lee CH. 2020. Effective biofilm control in a membrane biofilm reactor using a quenching bacterium (Rhodococcus sp. BH4). Biotechnol Bioeng. 117:1012–1023. doi: 10.1002/bit.27259.
  • Teixeira P, Oliveira R. 1999. Influence of surface characteristics on the adhesion of Alcaligenes denitrificans to polymeric substrates. J Adhes Sci Technol. 13:1287–1294. doi: 10.1163/156856199X00190.
  • Tong CY, Derek CJC. 2021a. Biofilm formation of benthic diatoms on commercial polyvinylidene fluoride membrane. Algal Res. 55:102260. doi: 10.1016/j.algal.2021.102260.
  • Tong CY, Derek CJC. 2021b. The role of substrates towards marine diatom Cylindrotheca fusiformis adhesion and biofilm development. J Appl Phycol. 33:2845–2862. doi: 10.1007/s10811-021-02504-1.
  • Tsavatopoulou VD, Aravantinou AF, Manariotis ID. 2021. Comparison of Botryococcus braunii and Neochloris vigensis biofilm formation on vertical oriented surfaces. Biointerface Res Appl Chem. 11:12843–12857.
  • Tsavatopoulou VD, Manariotis ID. 2020. The effect of surface properties on the formation of Scenedesmus rubescens biofilm. Algal Res. 52:102095. doi: 10.1016/j.algal.2020.102095.
  • Van Oss CJ, Good RJ, Chaudhury MK. 1988. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir. 4:884–891. doi: 10.1021/la00082a018.
  • Wang C, Tan Y, Zhu L, Zhou C, Yan X, Xu Q, Ruan R, Cheng P. 2022. The intrinsic characteristics of microalgae biofilm and their potential applications in pollutants removal: a review. Algal Res. 68:102849. doi: 10.1016/j.algal.2022.102849.
  • Wang J, Zhang M, Fang Z. 2019. Recent development in efficient processing technology for edible algae: a review. Trends Food Sci Technol. 88:251–259. doi: 10.1016/j.tifs.2019.03.032.
  • Wang JH, Zhuang LL, Xu XQ, Deantes-Espinosa VM, Wang XX, Hu HY. 2018. Microalgal attachment and attached systems for biomass production and wastewater treatment. Renew Sustain Energy Rev. 92:331–342. doi: 10.1016/j.rser.2018.04.081.
  • Wang W, Shen A, Yang X, Guo Y, Zhao T. 2020. Surface free energy method for evaluating the effects of anti-stripping agents on the moisture damage to asphalt mixtures. J Adhes Sci Technol. 34:1947–1970. doi: 10.1080/01694243.2020.1742077.
  • Williams PJB, Laurens LML. 2010. Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci. 3:554–590. doi: 10.1039/b924978h.
  • Wollmann F, Dietze S, Ackermann JU, Bley T, Walther T, Steingroewer J, Krujatz F. 2019. Microalgae wastewater treatment: biological and technological approaches. Eng Life Sci. 19:860–871. doi: 10.1002/elsc.201900071.
  • Xiao R, Zheng Y. 2016. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol Adv. 34:1225–1244. doi: 10.1016/j.biotechadv.2016.08.004.
  • Xin L, Hong-Ying H, Ke G, Ying-Xue S. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol. 101:5494–5500. doi: 10.1016/j.biortech.2010.02.016.
  • Yang CC, Wen RC, Shen CR, Yao DJ. 2015. Using a microfluidic gradient generator to characterize BG-11 medium for the growth of cyanobacteria Synechococcus elongatus PCC7942. Micromachines. 6:1755–1767. doi: 10.3390/mi6111454.
  • Yin Z, Zhu L, Li S, Hu T, Chu R, Mo F, Hu D, Liu C, Li B. 2020. A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: environmental pollution control and future directions. Bioresour Technol. 301:122804. doi: 10.1016/j.biortech.2020.122804.
  • Yuan H, Zhang X, Jiang Z, Chen X, Zhang X. 2019. Quantitative criterion to predict cell adhesion by identifying dominant interaction between microorganisms and abiotic surfaces. Langmuir. 35:3524–3533. doi: 10.1021/acs.langmuir.8b03465.
  • Yuan H, Zhang X, Jiang Z, Wang X, Chen X, Cao L, Zhang X. 2019. Analyzing the effect of pH on microalgae adhesion by identifying the dominant interaction between cell and surface. Colloids Surf B Biointerfaces. 177:479–486. doi: 10.1016/j.colsurfb.2019.02.023.
  • Zeng W, Li P, Huang Y, Xia A, Zhu X, Zhu X, Liao Q. 2022. How interfacial properties affect adhesion: an analysis from the interactions between microalgal cells and solid substrates. Langmuir. 38:3284–3296. doi: 10.1021/acs.langmuir.2c00042.
  • Zeriouh O, Reinoso-Moreno JV, López-Rosales L, Cerón-García MDC, Sánchez-Mirón A, García-Camacho F, Molina-Grima E. 2017. Biofouling in photobioreactors for marine microalgae. Crit Rev Biotechnol. 37:1006–1023. doi: 10.1080/07388551.2017.1299681.
  • Zhang L, Wang YZ, Wang S, Ding K. 2018. Effect of carbon dioxide on biomass and lipid production of Chlorella pyrenoidosa in a membrane bioreactor with gas-liquid separation. Algal Res. 31:70–76. doi: 10.1016/j.algal.2018.01.014.
  • Zhang Q, Yu Z, Jin S, Liu C, Li Y, Guo D, Hu M, Ruan R, Liu Y. 2020. Role of surface roughness in the algal short-term cell adhesion and long-term biofilm cultivation under dynamic flow condition. Algal Res. 46:101787. doi: 10.1016/j.algal.2019.101787.
  • Zhang X, Zhang Q, Yan T, Jiang Z, Zhang X, Zuo YY. 2015. Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method. Environ Sci Technol. 49:6164–6171. doi: 10.1021/es5050425.
  • Zhao Z, Muylaert K, Szymczyk A, Vankelecom IF. 2021. Enhanced microalgal biofilm formation and facilitated microalgae harvesting using a novel pH-responsive, crosslinked patterned and vibrating membrane. Chem Eng J. 410:127390. doi: 10.1016/j.cej.2020.127390.
  • Zhuang LL, Yu D, Zhang J, Liu F, Wu Y, Zhang T, Dao G, Hu H. 2018. The characteristics and influencing factors of the attached microalgae cultivation: a review. Renew Sustain Energy Rev. 94:1110–1119. doi: 10.1016/j.rser.2018.06.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.