Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 40, 2024 - Issue 3-4
168
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The removal of pathogenic bacteria and dissolved organic matter from freshwater using microporous membranes: insights into biofilm formation and fouling reversibility

, , , &
Pages 245-261 | Received 19 Jun 2023, Accepted 01 Apr 2024, Published online: 19 Apr 2024

References

  • Abhijith GR, Kadinski L, Ostfeld A. 2021. Modeling bacterial regrowth and trihalomethane formation in water distribution systems. Water. 13:463. doi: 10.3390/w13040463.
  • Aghapour A, Taghipour SA, Rahimpour A, Mollahosseini A, Tiraferri A. 2020. A Critical review on ultrasonic-assisted fouling control and cleaning of fouled membranes. Ultrasonics. 108:106228. doi: 10.1016/j.ultras.2020.106228.
  • Ahmad AL, Mohamad ZHM. 2017. Effect of air gap distance on PES/PVA hollow fibre membrane's morphology and performance. J. Phys. Sci. 28:185–99. doi: 10.21315/jps2017.28.s1.12.
  • Alsawaftah N, Abuwatfa W, Darwish N, Husseini G. 2021. A comprehensive review on membrane fouling: mathematical, modelling, prediction, diagnosis, and mitigation. Water. 13:1327. doi: 10.3390/w13091327.
  • Bachosz K, Minh TV, Long DN, Jakub Z, Luong NN, Teofil J. 2022. Enzyme-based control of membrane biofouling for water and wastewater purification: a comprehensive review. Environ Technol Innov. 25:102106. doi: 10.1016/j.eti.2021.102106.
  • Balcik-Canbolat C, Van der Bruggen B. 2020. Efficient removal of dyes from aqueous solution: the potential of cellulose nanocrystals to enhance PES nanocomposite membranes. Cellulose. 27:5255–5266. doi: 10.1007/s10570-020-03157-y.
  • Banti DC, Mitrakas M, Samaras P. 2021. Membrane fouling controlled by adjustment of biological treatment parameters in step-aerating MBR. Membranes (Basel). 11:553. doi: 10.3390/membranes11080553.
  • Barzin J, Safarpour M, Kordkatooli Z, Vahedi M. 2018. Improved microfiltration and bacteria removal performance of polyethersulfone membranes prepared by modified vapor-induced phase separation. Polym Adv Technol. 29:2420–2439. doi: 10.1002/pat.4352.
  • Cabrera J, Guo H, Yao J, Wang X. 2022. The effect of different carbon sources on biofouling in membrane fouling simulators: microbial community and implications. Biofouling. 38:747–763. doi: 10.1080/08927014.2022.2129017.
  • Chan S, Pullerits K, Keucken A, Persson KM, Paul CJ, Rådström P. 2019. Bacterial release from pipe biofilm in a full-scale drinking water distribution system. NPJ Biofilms Microbiomes. 5:9. doi: 10.1038/s41522-019-0082-9.
  • Chaukura N, Moyo W, Ingwani T, Ndiweni SK, Gwenzi W, Nkambule TI. 2021. Comparative removal efficiencies of natural organic matter by conventional drinking water treatment plants in Zimbabwe and South Africa. Water Environ Res. 93:570–581. doi: 10.1002/wer.1459.
  • Cho JY, Moon JH, Seong KY, Park KH. 1998. Antimicrobial activity of 4-hydroxybenzoic acid and trans-4-hydroxycinnamic acid isolated and identified from rice hull. Biosci Biotechnol Biochem. 62:2273–2276. doi: 10.1271/bbb.62.2273.
  • Coble PG, Spencer RGM, Baker A, Reynolds DM. 2014. Aquatic organic matter fluorescence. UK: Cambridge University Press; p. 75–122. doi: 10.1017/cbo9781139045452.006.
  • Dadari S, Rahimi M, Zinadini S. 2022. Novel antibacterial and antifouling PES nanofiltration membrane incorporated with green synthesized nickel-bentonite nanoparticles for heavy metal ions removal. Chem Eng J. 431:134116. doi: 10.1016/j.cej.2021.134116.
  • Du X, Shi Y, Jegatheesan V, Haq I. 2020. A Review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes (Basel). 10:24. doi: 10.3390/membranes10020024.
  • Fahimirad S, Fahimirad Z, Sillanpää M. 2020. Efficient removal of water bacteria and viruses using electrospun nanofiber. Sci Total Environ. 751:141673. doi: 10.1016/j.scitotenv.2020.141673.
  • Fattahi A, Arlos MJ, Bragg LM, Kowalczyk S, Liang R, Schneider OM, Zhou N, Servos MR. 2021. Photodecomposition of pharmaceuticals and personal care products using P25 modified with Ag nanoparticles in the presence of natural organic matter. Sci Total Environ. 752:142000. doi: 10.1016/j.scitotenv.2020.142000.
  • Gao Z, Chen Q, Song X, Wang J, Cai W. 2022. Microbial responses to various types of chemical regents during on-line cleaning of UF membranes. Membranes (Basel). 12:920. doi: 10.3390/membranes12100920.
  • Ghernaout D. 2020. Natural organic matter removal in the context of the performance of drinking water treatment processes-technical notes. OALib. 07:1–40. doi: 10.4236/oalib.1106751.
  • Gomes IB, Lemos M, Mathieu L, Simões M, Simões LC. 2018. The action of chemical and mechanical stresses on single and dual species biofilm removal of drinking water bacteria. Sci Total Environ. 631-632:987–993. doi: 10.1016/j.scitotenv.2018.03.042.
  • Harimawan, Ardiyan, Wonoputri, Vita, Ariel, Jonathan, Julian, Helen, Michell. 2022. Biofouling control of membrane distillation for seawater desalination: effect of air-backwash and chemical cleaning on biofouling formation. Biofouling. 38:889–902. doi: 10.1080/08927014.2022.2146496.
  • Hoek EMV, Weigand TM, Edalat A. 2022. Reverse osmosis membrane biofouling: causes, consequences, and countermeasures. Npj Clean Water. 5:1–16. doi: 10.1038/s41545-022-00183-0.
  • Horseman T, Wang Z, Lin S. 2021. Colloidal interactions between model foulants and engineered surfaces: interplay between roughness and surface energy. Chem Eng J Adv. 8:100138. doi: 10.1016/j.ceja.2021.100138.
  • Huang B, Gu H, Xiao K, Qu F, Yu H, Wei C. 2020. Fouling mechanisms analysis via combined fouling models for surface water ultrafiltration process. Membranes (Basel). 10:149. doi: 10.3390/membranes10070149.
  • Jaffar SS, Saallah S, Misson M, Siddiquee S, Roslan J, Saalah S, Lenggoro W. 2022. Recent development and environmental applications of nanocellulose-based membranes. Membranes (Basel). 12:287. doi: 10.3390/membranes12030287.
  • Karamad Yazdanabad S, Soriano Jerez Y, Samimi A, Shokrollahzadeh S, Mohebbi-Kalhori D, Ibáñez González MJ, Mazzuca Sobczuk T, Molina Grima E. 2023. Microalgal biofouling formation on tubular cellulose-ester membranes during dewatering by forward osmosis. Biofouling. 39:371–384. doi: 10.1080/08927014.2023.2218282.
  • Karimipour H, Shahbazi A, Vatanpour V. 2021. Fouling decline and retention increase of polyethersulfone membrane by incorporating melamine-based dendrimer amine functionalized graphene oxide nanosheets (GO/MDA). J Environ Chem Eng. 9:104849. doi: 10.1016/j.jece.2020.104849.
  • Khraisheh M, Elhenawy S, Almomani F, Al-Ghouti M, Hassan MK, Hameed BH. 2021. Recent progress on nanomaterial-based membranes for water treatment. Membranes (Basel). 11:995. doi: 10.3390/membranes11120995.
  • Kokkinos P, Mantzavinos D, Venieri D. 2020. Current trends in the application of nanomaterials for the removal of emerging micropollutants and pathogens from water. Molecules. 25:2016. doi: 10.3390/molecules25092016.
  • Kumar A, Chandra R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. 6:e03170. doi: 10.1016/j.heliyon.2020.e03170.
  • Lee Y-G, Shin J, Kim SJ, Cho KH, Westerhoff P, Rho H, Chon K. 2023. An autopsy study of hollow fiber and m ultibore ultrafiltration membranes from a pilot-scale ultra-high-recovery filtration system for surface water treatment. Sci Total Environ. 866:161311. doi: 10.1016/j.scitotenv.2022.161311.
  • Li Y, Luo J, Wan Y. 2020. Biofouling in sugarcane juice refining by nanofiltration membrane: fouling mechanism and cleaning. J Membr Sci. 612:118432. doi: 10.1016/j.memsci.2020.118432.
  • Maddela NR, Torres RO. 2021. The presence of low fouling-causing bacteria can lead to decreased membrane fouling potentials of mixed cultures. J Environ Chem Eng. 9:105131. doi: 10.1016/j.jece.2021.105131.
  • Mamba PP, Motsa MM, Ogola HJ, Msagati TA, Mamba BB, Nkambule TI. 2022. Laccase-coated polyethersulfone membranes for organic matter degradation and removal. J Membr Sci Res. 8:1–10. doi: 10.22079/JMSR.2021.139576.1418.
  • Marais SS, Ncube EJ, Msagati TA, Mamba BB, Nkambule TI. 2019. Assessment of trihalomethane (THM) precursors using specific ultraviolet absorbance (SUVA) and molecular size distribution (MSD). J Water Process Eng. 27:143–151. doi: 10.1016/j.jwpe.2018.11.019.
  • Medgyesi DN, Trabert B, Sampson J, Weyer PJ, Prizment A, Fisher JA, Freeman LE, Ward MH, Jones RR. 2022. Drinking water disinfection byproducts, ingested nitrate, and risk of endometrial cancer in postmenopausal women. Environ Health Perspect. 130:57012. doi: 10.1289/EHP10207.
  • Moyo W, Chaukura N, Motsa MM, Mthombeni NH, Msagati TA, Mamba BB, Heijman SG, Nkambule TI. 2021. The Synergistic fouling of ceramic membranes by particles and natural organic matter fractions using different surface waters in South Africa. J Membr Sci Res. 7:125–137. doi: 10.22079/JMSR.2020.127635.1384.
  • Nady N, Schroën K, Franssen MC, Fokkink R, Eldin MSM, Zuilhof H, Boom RM. 2012. Enzyme-catalyzed modification of PES surfaces: Reduction in adsorption of BSA, dextrin and tannin. J. Colloid Interface Sci. 378: doi: 10.1016/j.jcis.2012.04.019.
  • Petronijević MJ, Agbaba S, Ražić J, Jazić M, Tubić A, Watson M, Dalmacija B. 2019. Fate of bromine-containing disinfection by-products precursors during ozone and ultraviolet-based advanced oxidation processes. Int J Environ Sci Technol. 16:171–180. doi: 10.1007/s13762-018-1652-8.
  • Pöhler T, Mautner A, Aguilar-Sanchez A, Hansmann B, Kunnari V, Grönroos A, Rissanen V, Siqueira G, Aji PM, Tammelin T. 2022. Pilot-scale modification of polyethersulfone membrane with a size and charge selective nanocellulose layer. Sep and Purif Technol. 285:120341. doi: 10.1016/j.seppur.2021.120341.
  • Rehman ZU, Khojah B, Leiknes T, Alsogair S, Alsomali M. 2020. Removal of bacteria and organic carbon by an integrated ultrafiltration—nanofiltration desalination pilot plant. Membranes (Basel). 10:223. doi: 10.3390/membranes10090223.
  • Rho H, Yu P, Zhao Z, Lee C, Chon K, Perreault F, Alvarez PJ, Amy G, Westerhoff P. 2022. Inhibition of biofouling on reverse osmosis membrane surfaces by germicidal ultraviolet light side-emitting optical fibers. Water Res. 224:119094. doi: 10.1016/j.watres.2022.119094.
  • Sambo SP, Marais SS, Msagati TA, Mamba BB, Nkambule TI. 2020. Quantification of biodegradable natural organic matter (NOM) fractions and its impact on bacterial regrowth in a South African water treatment plant. J Water Process Eng. 36:101332. doi: 10.1016/j.jwpe.2020.101332.
  • Setareh P, Pirsaheb M, Khezri SM, Hossaini H. 2021. Improving natural organic matter and turbidity removal from surface water by pre-coagulation combined with ozone/ultrasound. Water Supply. 21:1410–1422. doi: 10.2166/WS.2020.323.
  • Shao S, Wang Y, Shi D, Zhang X, Tang CY, Liu Z, Li J. 2018. Biofouling in ultrafiltration process for drinking water treatment and its control by chlorinated-water and pure water backwashing. Sci Total Environ. 644:306–314. doi: 10.1016/j.scitotenv.2018.06.220.
  • Shao M, Ye C, Li T, Gan J, Yu X, Wang L. 2022. Intensified inactivation of model and environmental bacteria by an atmospheric-pressure air-liquid discharge plasma compared with chlorination. J Environ Sci (China). 117:80–90. doi: 10.1016/j.jes.2022.01.038.
  • Singh AV, Kumawat IK. 2012. Preparation and characterisation of tamarind 4-hydroxybenzoic acid (THBA) resin and its use in extraction of heavy metal ions from industrial wastewater. WSA. 38:529–536. doi: 10.4314/wsa.v38i4.7.
  • Syngouna VI, Vantarakis A. 2021. Removal performance of faecal indicators by natural and silver-modified zeolites of various particle sizes under dynamic batch experiments: preliminary results. Water. 13:2938. doi: 10.3390/w13202938.
  • Takimoto Y, Miwa T, Hatamoto M. 2023. Initiation and progression of early-stage microbial-driven membrane fouling in membrane bioreactors: a review. Biofouling. 39:459–472. doi: 10.1080/08927014.2023.2226064.
  • Travnickova E, Mikula P, Oprsal J, Bohacova M, Kubac L, Kimmer D, Soukupova J, Bittner M. 2019. Resazurin assay for assessment of antimicrobial properties of electrospun nanofiber filtration membranes. AMB Express. 9:183. doi: 10.1186/s13568-019-0909-z.
  • Tshindane P, Mamba BB, Motsa MM, Nkambule TI. 2023. Delayed solvent–nonsolvent demixing preparation and performance of a highly permeable polyether sulfone ultrafiltration membrane. Membranes (Basel). 13:2–15. doi: 10.3390/membranes13010039.
  • Urducea CB, Nechifor AC, Dimulescu IA, Oprea O, Nechifor G, Totu EE, Isildak I, Albu PC, Bungău SG. 2020. Control of nanostructured polysulfone membrane preparation by phase inversion method. Nanomaterials (Basel). 10:1–21. doi: 10.3390/nano10122349.
  • Wang X, Ma J, Wu Z, Wang Z. 2020. Stimulatory effects on bacteria induced by chemical cleaning cause severe biofouling of membranes. J Water Reuse Desalin. 10:82–94. doi: 10.2166/wrd.2020.062.
  • Wang S, Xiaoming S, Fushan C. 2018. Compatibility study on nanocellulose and polyethersulfone based blends. Cellul Chem Technol. 52:265–270.
  • Xu H, Xiao K, Wang X, Liang S, Wei C, Wen X, Huang X. 2020. Outlining the roles of membrane-foulant and foulant-foulant interactions in organic fouling during microfiltration and ultrafiltration: A mini-review. Front Chem. 8:417. doi: 10.3389/fchem.2020.00417.
  • Zhang L, Cui Z, Hu M, Mo Y, Li S, He B, Li J. 2017. Preparation of PES/SPSf blend ultrafiltration membranes with high performance via H2O-induced gelation phase separation. J Membr Sci. 540:136–145. doi: 10.1016/j.memsci.2017.06.044.
  • Zhang D, Karkooti A, Liu L, Sadrzadeh M, Thundat T, Liu Y, Narain R. 2018. Fabrication of antifouling and antibacterial polyethersulfone (PES)/Cellulose nanocrystals (CNC) nanocomposite membranes. J Membr Sci. 549:350–356. doi: 10.1016/j.memsci.2017.12.034.
  • Zhang H, Zhu S, Yang J, Ma A. 2022. Advancing strategies of biofouling control in water-treated polymeric membranes. Polymers (Basel). 14:1–23. doi: 10.3390/polym14061167.