Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Latest Articles
45
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bacterial adhesion and corrosion behavior of different pure metals induced by sulfate reducing bacteria

, , , &
Received 15 Dec 2023, Accepted 10 May 2024, Published online: 05 Jun 2024

References

  • Anguita J, Pizarro G, Vargas IT. 2022. Mathematical modelling of microbial corrosion in carbon steel due to early-biofilm formation of sulfate-reducing bacteria via extracellular electron transfer. Bioelectrochemistry. 145:108058. doi: 10.1016/j.bioelechem.2022.108058.
  • Anusha YG, Mulky L. 2023. Biofilms and beyond: a comprehensive review of the impact of sulphate reducing bacteria on steel corrosion. Biofouling. 39:897–915. doi: 10.1080/08927014.2023.2284316.
  • Biswas KC, Woodards NA, Xu H, Barton LL. 2009. Reduction of molybdate by sulfate-reducing bacteria. Biometals. 22:131–139. doi: 10.1007/s10534-008-9198-8.
  • Blais JF, Djedidi Z, Cheikh RB, Tyagi RD, Mercier G. 2008. Metals precipitation from effluents: review. Pract Period Hazard Toxic Radioact Waste Manage. 12:135–149.
  • Chen S, Cheng YF, Voordouw G. 2017. A comparative study of corrosion of 316L stainless steel in biotic and abiotic sulfide environments. Int Biodeterior Biodegrad. 120:91–96.
  • Chen Z, Dou W, Chen S, Pu Y, Xu Z. 2022. Influence of nutrition on Cu corrosion by Desulfovibrio vulgaris in anaerobic environment. Bioelectrochemistry. 144:108040. doi: 10.1016/j.bioelechem.2021.108040.
  • Cheng XL, Ma HY, Chen SH, Chen XA, Yao ZM. 2000. Corrosion of nickel in acid solutions with hydrogen sulphide. Corros Sci. 42:299–311.
  • Dec W, Mosialek M, Socha RP, Jaworska-Kik M, Simka W, Michalska J. 2017. Characterization of Desulfovibrio desulfuricans biofilm on high-alloyed stainless steel: XPS and electrochemical studies. Mater Chem Phys. 195:28–39.
  • Dou W, Jia R, Jin P, Liu J, Chen S, Gu T. 2018. Investigation of the mechanism and characteristics of copper corrosion by sulfate reducing bacteria. Corros Sci. 144:237–248.
  • Dou W, Pu Y, Han X, Song Y, Chen S, Gu T. 2020. Corrosion of Cu by a sulfate reducing bacterium in anaerobic vials with different headspace volumes. Bioelectrochemistry. 133:107478. doi: 10.1016/j.bioelechem.2020.107478.
  • Fang HHP, Xu LC, Chan KY. 2000. Influence of Cr3+ on microbial cluster formation in biofilm and on steel corrosion. Biotechnol Lett. 22:801–805. doi: 10.1023/A:1005620606868.
  • Fang HHP, Xu LC, Chan KY. 2002. Effects of toxic metals and chemicals on biofilm and biocorrosion. Water Res. 36:4709–4716. doi: 10.1016/s0043-1354(02)00207-5.
  • Harasim P, Filipek T, Harasim P. 2015. Nickel in the environment. J Elem. 20:525–534. doi: 10.5601/jelem.2014.19.3.651.
  • Herting G, Wallinder IO, Leygraf C. 2005. A comparison of release rates of Cr, Ni, and Fe from stainless steel alloys and the pure metals exposed to simulated rain events. J Electrochem Soc. 152: B23–B29.
  • Herting G, Wallinder IO, Leygraf C. 2008. Metal release rate from AISI 316L stainless steel and pure Fe, Cr and Ni into a synthetic biological medium – a comparison. J Environ Monit. 10:1092–1098. doi: 10.1039/b805075a.
  • Jacobson GA. 2007. Corrosion at Prudhoe Bay – a lesson on the line. Mater Perform. 46:26–34.
  • Jargelius-Pettersson RFA. 1999. Electrochemical investigation of the influence of nitrogen alloying on pitting corrosion of austenitic stainless steels. Corros Sci. 41:1639–1664.
  • Javed MA, Neil WC, Stoddart PR, Wade SA. 2016. Influence of carbon steel grade on the initial attachment of bacteria and microbiologically influenced corrosion. Biofouling. 32:109–122. doi: 10.1080/08927014.2015.1128528.
  • Jia R, Wang D, Jin P, Unsal T, Yang D, Yang J, Xu D, Gu T. 2019. Effects of ferrous ion concentration on microbiologically influenced corrosion of carbon steel by sulfate reducing bacterium Desulfovibrio vulgaris. Corros Sci. 153:127–137.
  • Kikot P, Viera M, Mignone C, Donati E. 2010. Study of the effect of pH and dissolved heavy metals on the growth of sulfate-reducing bacteria by a fractional factorial design. Hydrometallurgy. 104:494–500. doi: 10.1016/j.hydromet.2010.02.026.
  • Krantz GP, Lucas K, Wunderlich EL, Hoang LT, Avci R, Siuzdak G, Fields MW. 2019. Bulk phase resource ratio alters carbon steel corrosion rates and endogenously produced extracellular electron transfer mediators in a sulfate-reducing biofilm. Biofouling. 35:669–683. doi: 10.1080/08927014.2019.1646731.
  • Lai H, McNeill LS. 2006. Chromium redox chemistry in drinking water systems. J Environ Eng-ASCE. 132:842–851.
  • Lopes FA, Morin P, Oliveira R, Melo LF. 2006. Interaction of Desulfovibrio desulfuricans biofilms with stainless steel surface and its impact on bacterial metabolism. J Appl Microbiol. 101:1087–1095. doi: 10.1111/j.1365-2672.2006.03001.x.
  • Magana-Zavala CR, Martin M-S, Rodriguez-Gomez FJ. 2009. Behaviour of Ni and Ni oxide thin films obtained by different techniques for the prevention of corrosion in sour media. Anti-Corros Methods Mater. 56:255–260.
  • Montemor MF, Simoes AMP, Ferreira MGS, Belo MD. 1999. The role of Mo in the chemical composition and semiconductive behaviour of oxide films formed on stainless steels. Corros Sci. 41:17–34.
  • Mulrooney SB, Hausinger RP. 2003. Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev. 27:239–261. doi: 10.1016/S0168-6445(03)00042-1.
  • Olsson COA, Landolt D. 2003. Passive films on stainless steels – chemistry, structure and growth. Electrochim Acta. 48:1093–1104.
  • Pu Y, Tian Y, Hou S, Dou W, Chen S. 2023a. Carbon starvation considerably accelerated nickel corrosion by Desulfovibrio vulgaris. Bioelectrochemistry. 153:108453. doi: 10.1016/j.bioelechem.2023.108453.
  • Pu Y, Tian Y, Hou S, Dou W, Chen S. 2023b. Enhancement of exogenous riboflavin on microbiologically influenced corrosion of nickel by electroactive Desulfovibrio vulgaris biofilm. npj Mater Degrad. 7:1. doi: 10.1038/s41529-023-00325-w.
  • Reis MA, Almeida JS, Lemos PC, Carrondo MJ. 1992. Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnol Bioeng. 40:593–600. doi: 10.1002/bit.260400506.
  • Rincon JRT, Calixto Gomez DM, Sarmiento Caraballo AE, Panqueva Alvarez JH. 2008. Evaluation of molybdate and nitrate on sulphate-reducing bacteria related to corrosion processes in industrial systems. Rev Argent Microbiol. 40:52–62.
  • Shu YH, Wang FH, Wu WT. 2000. Corrosion behavior of pure Cr with a solid NaCl deposit in O2 plus water vapor. Oxidation of Metals. 54:457–471. doi: 10.1023/A:1004690518225.
  • Stansbury EE, Buchanan RA. 2000. Fundamentals of electrochemical corrosion. Materials Park (OH): ASM International. doi: 10.31399/asm.tb.fec.9781627083027.
  • Telegdi J. 2018. Influence of alloying elements on adhesion of corrosion relevant microorganisms. Ochr Koroz. 61:150–154.
  • Telegdi J, Shaban A, Trif L. 2020. Review on the microbiologically influenced corrosion and the function of biofilms. Int J Corros Scale Inhib. 9:1–33.
  • Thompson AA, Wood JL, Palombo EA, Green WK, Wade SA. 2022. From laboratory tests to field trials: a review of cathodic protection and microbially influenced corrosion. Biofouling. 38:298–320. doi: 10.1080/08927014.2022.2058395.
  • Tran TTT, Kannoorpatti K, Padovan A, Thennadil S, Nguyen Dang N. 2019. Effect of nickel on the adhesion and corrosion ability of Pseudomonas aeruginosa on stainless steel. J Mater Eng Perform. 28:5797–5805.
  • Tsuchiya H, Fujimoto S, Chihara O, Shibata T. 2002. Semiconductive behavior of passive films formed on pure Cr and Fe–Cr alloys in sulfuric acid solution. Electrochim Acta. 47:4357–4366.
  • Wan H, Zhang T, Wang J, Rao Z, Zhang Y, Li G, Gu T, Liu H. 2023a. Effect of alloying element content on anaerobic microbiologically influenced corrosion sensitivity of stainless steels in enriched artificial seawater. Bioelectrochemistry. 150:108367. doi: 10.1016/j.bioelechem.2023.108367.
  • Wan H, Zhang T, Xu Z, Rao Z, Zhang G, Li G, Liu H. 2023b. Effect of sulfate reducing bacteria on the galvanic corrosion behavior of X52 carbon steel and 2205 stainless steel bimetallic couple. Corros Sci. 212:110963.
  • Wang D, Kijkla P, Saleh MA, Kumseranee S, Punpruk S, Gu T. 2022a. Tafel scan schemes for microbiologically influenced corrosion of carbon steel and stainless steel. J Mater Sci Technol. 130:193–197.
  • Wang D, Liu J, Jia R, Dou W, Kumseranee S, Punpruk S, Li X, Gu T. 2020. Distinguishing two different microbiologically influenced corrosion (MIC) mechanisms using an electron mediator and hydrogen evolution detection. Corros Sci. 177:108993.
  • Wang D, Wang Y, Wu H, Li Z, Wu Y, Liu B, Tian Z, Li X, Xu D, Peng L, et al. 2024. Eco-friendly bifunctional antibacterial and anticorrosive broad-spectrum rosin thiourea iminazole quaternary ammonium salt against microbiologically influenced corrosion. Corros Sci. 229:111847.
  • Wang D, Yang C, Zheng B, Yang M, Gao Y, Jin Y, Dong Y, Liu P, Zhang M, Zhou E, et al. 2023. Microbiologically influenced corrosion of CoCrFeMnNi high entropy alloy by sulfate-reducing bacterium Desulfovibrio vulgaris. Corros Sci. 223:111429.
  • Wang J, Wang Y, Ren W, Zhang D, Ju P, Dou K. 2022b. “Nano killers" activation by permonosulfate enables efficient anaerobic microorganisms disinfection. J Hazard Mater. 440:129742. doi: 10.1016/j.jhazmat.2022.129742.
  • Xia J, Yang C, Xu D, Sun D, Nan L, Sun Z, Li Q, Gu T, Yang K. 2015. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm. Biofouling. 31:481–492. doi: 10.1080/08927014.2015.1062089.
  • Xu D, Gu T. 2014. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm. Int Biodeterior Biodegrad. 91:74–81.
  • Xu D, Li Y, Gu T. 2016. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry. 110:52–58. doi: 10.1016/j.bioelechem.2016.03.003.
  • Xu L, Kijkla P, Kumseranee S, Punpruk S, Gu T. 2023. “Corrosion-resistant” chromium steels for oil and gas pipelines can suffer from very severe pitting corrosion by a sulfate-reducing bacterium. J Mater Sci Technol. 174:23–29.
  • Yin L, Xu D, Yang C, Xi T, Chen X, Yang K. 2021. Ce addition enhances the microbially induced corrosion resistance of Cu-bearing 2205 duplex stainless steel in presence of sulfate reducing bacteria. Corros Sci. 179:109141.
  • Young J. 2008. Chapter 8 corrosion by sulfur. Corros series. 1:361–396.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.