Publication Cover
Biofouling
The Journal of Bioadhesion and Biofilm Research
Volume 40, 2024 - Issue 5-6
98
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Effective antibacterial agents in modern wound dressings: a review

&
Pages 305-332 | Received 08 Nov 2023, Accepted 17 May 2024, Published online: 05 Jun 2024

References

  • Abazari M, Akbari T, Hasani M, Sharifikolouei E, Raoufi M, Foroumadi A, Sharifzadeh M, Firoozpour L, Khoobi M. 2022. Polysaccharide-based hydrogels containing herbal extracts for wound healing applications. Carbohydr Polym. 294:119808. doi: 10.1016/j.carbpol.2022.119808.
  • Abraham J, Dowling K, Florentine S. 2021. Can copper products and surfaces reduce the spread of infectious microorganisms and hospital-acquired infections? Materials. 14:3444. doi: 10.3390/ma14133444.
  • Aburayan WS, Alajmi AM, Alfahad AJ, Alsharif WK, Alshehri AA, Booq RY, Alsudir SA, Alsulaihem FM, Bukhary HA, Badr MY, et al. 2022. Melittin from bee venom encapsulating electrospun fibers as a potential antimicrobial wound dressing patches for skin infections. Pharmaceutics. 14:725. doi: 10.3390/pharmaceutics14040725.
  • Adamczak A, Ożarowski M, Karpiński TM. 2020. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals. 13:153. doi: 10.3390/ph13070153.
  • Aderibigbe BA, Buyana B. 2018. Alginate in wound dressings. Pharmaceutics. 10:42. doi: 10.3390/pharmaceutics10020042.
  • Aduba DC, Yang H. 2017. Polysaccharide fabrication platforms and biocompatibility assessment as candidate wound dressing materials. Bioengineering. 4:1. doi: 10.3390/bioengineering4010001.
  • Agarwalla A, Ahmed W, Al-Marzouqi AH, Rizvi TA, Khan M, Zaneldin E. 2023. Characteristics and key features of antimicrobial materials and associated mechanisms for diverse applications. Molecules. 28:8041. doi: 10.3390/molecules28248041.
  • Ahmadi M, Adibhesami M. 2017. The effect of silver nanoparticles on wounds contaminated with Pseudomonas aeruginosa in mice: an experimental study. Iran J Pharm Res. 16:661–669.
  • Akhouy G, Aziz K, Gebrati L, El Achaby M, Akgul Y, Yap P-S, Agustiono Kurniawan T, Aziz F. 2023. Recent applications on biopolymers electrospinning: strategies, challenges and way forwards. Polym Plast Technol Mater. 62:1754–1775. doi: 10.1080/25740881.2023.2234459.
  • Al-Ahmary KM, Al-Mhyawi SR, Khan S, Alrashdi KS, Shafie A, Babalghith AO, Ashour AA, Alshareef TH, Moglad E. 2024. Medicinal and chemosensing applications of chitosan based material: a review. Int J Biol Macromol. 268:131493. doi: 10.1016/j.ijbiomac.2024.131493.
  • Alavi M, Hamblin MR. 2023. Antibacterial silver nanoparticles: effects on bacterial nucleic acids. Cell Mol Biomed Rep. 3:35–40. doi: 10.55705/cmbr.2022.361677.1065.
  • Albaridi NA. 2019. Antibacterial potency of honey. Int J Microbiol. 2019:2464507–2464510. doi: 10.1155/2019/2464507.
  • Alherz FA, Negm WA, Elekhnawy E, El-Masry TA, Haggag EM, Alqahtani MJ, Hussein IA. 2022. Silver nanoparticles prepared using Encephalartos laurentianus de wild leaf extract have inhibitory activity against Candida albicans clinical isolates. JoF. 8:1005. doi: 10.3390/jof8101005.
  • Ali A, Chowdhury S, Carr MA, Janorkar AV, Marquart M, Griggs JA, Bumgardner JD, Roach MD. 2023. Antibacterial and biocompatible polyaniline‐doped titanium oxide layers. J Biomed Mater Res B Appl Biomater. 111:1100–1111. doi: 10.1002/jbm.b.35217.
  • Aljabeili HS, Barakat H, Abdel-Rahman HA. 2018. Chemical composition, antibacterial and antioxidant activities of thyme essential oil (Thymus vulgaris). FNS. 09:433–446. doi: 10.4236/fns.2018.95034.
  • Almasaudi S. 2021. The antibacterial activities of honey. Saudi J Biol Sci. 28:2188–2196. doi: 10.1016/j.sjbs.2020.10.017.
  • Al-Musawi S, Albukhaty S, Al-Karagoly H, Sulaiman GM, Alwahibi MS, Dewir YH, Soliman DA, Rizwana H. 2020. Antibacterial activity of honey/chitosan nanofibers loaded with capsaicin and gold nanoparticles for wound dressing. Molecules. 25:4770. doi: 10.3390/molecules25204770.
  • Alven S, Peter S, Mbese Z, Aderibigbe BA. 2022. Polymer-based wound dressing materials loaded with bioactive agents: potential materials for the treatment of diabetic wounds. Polymers. 14:724. doi: 10.3390/polym14040724.
  • Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Heras Caballero A, Acosta N. 2021. Chitosan: an overview of its properties and applications. Polymers. 13:3256. doi: 10.3390/polym13193256.
  • Arendsen LP, Thakar R, Sultan AH. 2019. The use of copper as an antimicrobial agent in health care, including obstetrics and gynecology. Clin Microbiol Rev. 32:e00125–00118. doi: 10.1128/CMR.00125-18.
  • Ayala A, Muñoz MF, Argüelles S. 2014. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:360438–360431. doi: 10.1155/2014/360438.
  • Azimi-Fouladi A, Falak P, Hassanzadeh-Tabrizi S. 2023. The photodegradation of antibiotics on nano cubic spinel ferrites photocatalytic systems: a review. J Alloys Compd. 961:171075. doi: 10.1016/j.jallcom.2023.171075.
  • Badetti E, Calgaro L, Falchi L, Bonetto A, Bettiol C, Leonetti B, Ambrosi E, Zendri E, Marcomini A. 2019. Interaction between copper oxide nanoparticles and amino acids: influence on the antibacterial activity. Nanomaterials. 9:792. doi: 10.3390/nano9050792.
  • Bai X, Yang Y, Zheng W, Huang Y, Xu F, Bao Z. 2023. Synergistic photothermal antibacterial therapy enabled by multifunctional nanomaterials: progress and perspectives. Mater Chem Front. 7:355–380. doi: 10.1039/D2QM01141G.
  • Barbu A, Neamtu B, Zăhan M, Iancu GM, Bacila C, Mireșan V. 2021. Current trends in advanced alginate-based wound dressings for chronic wounds. J Pers Med. 11:890. doi: 10.3390/jpm11090890.
  • Barman S, Srinivasan K. 2022. Diabetes and zinc dyshomeostasis: can zinc supplementation mitigate diabetic complications? Crit Rev Food Sci Nutr. 62:1046–1061. doi: 10.1080/10408398.2020.1833178.
  • Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN. 2021. Preparations, properties, and applications of polyaniline and polyaniline thin films—A review. Polymers. 13:2003. doi: 10.3390/polym13122003.
  • Bi X, Bai Q, Liang M, Yang D, Li S, Wang L, Liu J, Yu WW, Sui N, Zhu Z. 2022. Silver peroxide nanoparticles for combined antibacterial sonodynamic and photothermal therapy. Small. 18:e2104160. doi: 10.1002/smll.202104160.
  • Boateng JS, Matthews KH, Stevens HN, Eccleston GM. 2008. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 97:2892–2923. doi: 10.1002/jps.21210.
  • Bogdanov S. 1997. Nature and origin of the antibacterial substances in honey. LWT-Food Sci Technol. 30:748–753.
  • Boomi P, Ganesan R, Prabu Poorani G, Jegatheeswaran S, Balakumar C, Gurumallesh Prabu H, Anand K, Marimuthu Prabhu N, Jeyakanthan J, Saravanan M. 2020. Phyto-engineered gold nanoparticles (AuNPs) with potential antibacterial, antioxidant, and wound healing activities under in vitro and in vivo conditions. Int J Nanomedicine. 15:7553–7568. doi: 10.2147/IJN.S257499.
  • Borkow G, Melamed E. 2021. Copper, an abandoned player returning to the wound healing battle. In: Aghaei S, editor. Recent advances in wound healing. London (UK): IntechOpen.
  • Borkow G. 2014. Using copper to improve the well-being of the skin. Curr Chem Biol. 8:89–102. doi: 10.2174/2212796809666150227223857.
  • Boukraâ L, Amara K. 2008. Synergistic effect of starch on the antibacterial activity of honey. J Med Food. 11:195–198. doi: 10.1089/jmf.2007.502.
  • Brar B, Marwaha S, Poonia AK, Koul B, Kajla S, Rajput VD. 2023. Nanotechnology: a contemporary therapeutic approach in combating infections from multidrug-resistant bacteria. Arch Microbiol. 205:62. doi: 10.1007/s00203-023-03404-3.
  • Bruna T, Maldonado-Bravo F, Jara P, Caro N. 2021. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 22:7202. doi: 10.3390/ijms22137202.
  • Bekele TM, Alamnie GA, Girma A, Mebratie GB. 2023. Nanoparticle therapy for antibiotic-resistant bacteria: current methods and prospects. Bioinspir Biomim Nanobiomater. 12:153–162.
  • Burrell RE. 2003. A scientific perspective on the use of topical silver preparations. Ostomy Wound Manage. 49:19–24.
  • Chakraborty N, Jha D, Roy I, Kumar P, Gaurav SS, Marimuthu K, Ng O-T, Lakshminarayanan R, Verma NK, Gautam HK. 2022. Nanobiotics against antimicrobial resistance: harnessing the power of nanoscale materials and technologies. J Nanobiotechnology. 20:375. doi: 10.1186/s12951-022-01573-9.
  • Chinnaiyan SK, Pandiyan R, Natesan S, Chindam S, Gouti AK, Sugumaran A. 2022. Fabrication of basil oil Nanoemulsion loaded gellan gum hydrogel—Evaluation of its antibacterial and anti-biofilm potential. J Drug Delivery Sci Technol. 68:103129. doi: 10.1016/j.jddst.2022.103129.
  • Chug MK, Brisbois EJ. 2022. Recent developments in multifunctional antimicrobial surfaces and applications toward advanced nitric oxide-based biomaterials. ACS Mater Au. 2:525–551. doi: 10.1021/acsmaterialsau.2c00040.
  • Cui Q, Yuan H, Bao X, Ma G, Wu M, Xing C. 2020. Synergistic photodynamic and photothermal antibacterial therapy based on a conjugated polymer nanoparticle-doped hydrogel. ACS Appl Bio Mater. 3:4436–4443. doi: 10.1021/acsabm.0c00423.
  • Cunningham B, Engstrom AM, Harper BJ, Harper SL, Mackiewicz MR. 2021. Silver nanoparticles stable to oxidation and silver ion release show size-dependent toxicity in vivo. Nanomaterials. 11:1516. doi: 10.3390/nano11061516.
  • Da Silva Veiga R, Cristina Marcucci M, Lucia Queiroga C, Helena Frankland Sawaya AC, Barreto da Silva C, Matiko Sasagawa S, Navarini A, Marchetti G, Tomaz Martinho G, Tiemi Fukunaga E, et al. 2023. Synergistic effect of Baccharis dracunculifolia DC and green propolis with antimicrobial drugs against Staphylococcus aureus. Braz J Nat Sci. 5: e 1782023–1782021. 1782029. doi: 10.31415/bjns.v5i1.178.
  • Dai J, Zhou Y, Mei S, Chen H. 2023. Application of antibiotic bone cement in the treatment of infected diabetic foot ulcers in type 2 diabetes. BMC Musculoskelet Disord. 24:135. doi: 10.1186/s12891-023-06244-w.
  • Dediu V, Ghitman J, Gradisteanu Pircalabioru G, Chan KH, Iliescu FS, Iliescu C. 2023. Trends in photothermal nanostructures for antimicrobial applications. Int J Mol Sci. 24:9375. doi: 10.3390/ijms24119375.
  • Dhivya C, Vandarkuzhali SAA, Radha N. 2019. Antimicrobial activities of nanostructured polyanilines doped with aromatic nitro compounds. Arab J Chem. 12:3785–3798. doi: 10.1016/j.arabjc.2015.12.005.
  • Dhivya S, Padma VV, Santhini E. 2015. Wound dressings–A review. Biomedicine. 5:22. doi: 10.7603/s40681-015-0022-9.
  • Duceac IA, Coseri S. 2022. Biopolymers and their derivatives: key components of advanced biomedical technologies. Biotechnol Adv. 61:108056. doi: 10.1016/j.biotechadv.2022.108056.
  • Dzobo K. 2022. The role of natural products as sources of therapeutic agents for innovative drug discovery. In: Kenakin T, editor. Comprehensive pharmacology. Oxford: Elsevier; p. 408.
  • Edo GI, Onoharigho FO, Akpoghelie PO, Emakpor OL, Ozgor E, Akhayere E. 2022. Physicochemical, phytochemical, antioxidant, and inhibition properties of key enzymes linked to raw and regular honey. Chem Afr. 5:1351–1364. doi: 10.1007/s42250-022-00401-9.
  • Ehtesabi H, Fayaz M, Hosseini-Doabi F, Rezaei P. 2023. The application of green synthesis nanoparticles in wound healing: a review. Mater Today Sustainabil. 21:100272. doi: 10.1016/j.mtsust.2022.100272.
  • El-Aassar M, El Fawal G, El-Deeb NM, Hassan HS, Mo X. 2016. Electrospun polyvinyl alcohol/pluronic F127 blended nanofibers containing titanium dioxide for antibacterial wound dressing. Appl Biochem Biotechnol. 178:1488–1502. doi: 10.1007/s12010-015-1962-y.
  • El-Sakhawy M, Salama A, Mohamed SA. 2023. Propolis applications in food industries and packaging. Biomass Conv Bioref. 1–16. doi: 10.1007/s13399-023-04044-9.
  • Esa NEF, Ansari MNM, Razak SIA, Ismail NI, Jusoh N, Zawawi NA, Jamaludin MI, Sagadevan S, Nayan NHM. 2022. A review on recent progress of stingless bee honey and its hydrogel-based compound for wound care management. Molecules. 27:3080. doi: 10.3390/molecules27103080.
  • Eskandarinia A, Kefayat A, Gharakhloo M, Agheb M, Khodabakhshi D, Khorshidi M, Sheikhmoradi V, Rafienia M, Salehi H. 2020. A propolis enriched polyurethane-hyaluronic acid nanofibrous wound dressing with remarkable antibacterial and wound healing activities. Int J Biol Macromol. 149:467–476. doi: 10.1016/j.ijbiomac.2020.01.255.
  • Fan X, Yahia LH, Sacher E. 2021. Antimicrobial properties of the Ag, Cu nanoparticle system. Biology. 10:137. doi: 10.3390/biology10020137.
  • Farshidfar N, Iravani S, Varma RS. 2023. Alginate-based biomaterials in tissue engineering and regenerative medicine. Mar Drugs. 21:189. doi: 10.3390/md21030189.
  • Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman M-u, Jaber F, Dera AA, Awwad NS, Ibrahium HA. 2023. Recent developments in natural biopolymer based drug delivery systems. RSC Adv. 13:23087–23121. doi: 10.1039/d3ra03369d.
  • Fenniche F, Henni A, Khane Y, Aouf D, Harfouche N, Bensalem S, Zerrouki D, Belkhalfa H. 2022. Electrochemical synthesis of reduced graphene oxide–wrapped polyaniline nanorods for improved photocatalytic and antibacterial activities. J Inorg Organomet Polym. 32:1011–1025. doi: 10.1007/s10904-021-02204-w.
  • Franco D, Calabrese G, Guglielmino SPP, Conoci S. 2022. Metal-based nanoparticles: antibacterial mechanisms and biomedical application. Microorganisms. 10:1778. doi: 10.3390/microorganisms10091778.
  • Frangieh J, Salma Y, Haddad K, Mattei C, Legros C, Fajloun Z, El Obeid D. 2019. First characterization of the venom from Apis mellifera syriaca, a honeybee from the middle east region. Toxins. 11:191. doi: 10.3390/toxins11040191.
  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M. 2011. Silver nanoparticles as potential antiviral agents. Molecules. 16:8894–8918. doi: 10.3390/molecules16108894.
  • Ge P, Zhang J, Ding T, Xianyu Y. 2023. Surface chemistry of gold nanoparticles for bacterial detection and antimicrobial applications. ACS Materials Lett. 5:638–655. doi: 10.1021/acsmaterialslett.2c00923.
  • Gizdavic-Nikolaidis MR, Pupe JM, Jose A, Silva LP, Stanisavljev DR, Svirskis D, Swift S. 2023. Eco-friendly enhanced microwave synthesis of polyaniline/chitosan-AgNP composites, their physical characterisation and antibacterial properties. Synth Met. 293:117273. doi: 10.1016/j.synthmet.2022.117273.
  • Golmakani M-T, Zare M, Razzaghi S. 2017. Eugenol enrichment of clove bud essential oil using different microwave-assisted distillation methods. FSTR. 23:385–394. doi: 10.3136/fstr.23.385.
  • Govindasamy GA, Mydin RBS, Effendy W, Sreekantan S. 2022. Novel dual-ionic ZnO/CuO embedded in porous chitosan biopolymer for wound dressing application: physicochemical, bactericidal, cytocompatibility and wound healing profiles. Mater Today Commun. 33:104545. doi: 10.1016/j.mtcomm.2022.104545.
  • Grace AN, Pandian K. 2007. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—A brief study. Colloids Surf, A. 297:63–70. doi: 10.1016/j.colsurfa.2006.10.024.
  • Gudkov SV, Serov DA, Astashev ME, Semenova AA, Lisitsyn AB. 2022. Ag2O nanoparticles as a candidate for antimicrobial compounds of the new generation. Pharmaceuticals. 15:968. doi: 10.3390/ph15080968.
  • Gushiken LFS, Beserra FP, Bastos JK, Jackson CJ, Pellizzon CH. 2021. Cutaneous wound healing: an update from physiopathology to current therapies. Life. 11:665. doi: 10.3390/life11070665.
  • Hadidi M, Bigham A, Saebnoori E, Hassanzadeh-Tabrizi S, Rahmati S, Alizadeh ZM, Nasirian V, Rafienia M. 2017. Electrophoretic-deposited hydroxyapatite-copper nanocomposite as an antibacterial coating for biomedical applications. Surf Coat Technol. 321:171–179. doi: 10.1016/j.surfcoat.2017.04.055.
  • Hakimi-Tehrani MJ, Hasanzadeh-Tabrizi S, Koupaei N, Saffar A, Rafiei M. 2022. Synthesis of g-C3N4/ZnO/WO3 nanocomposite as a highly efficient antibacterial adsorbent for water treatment. Diamond Relat Mater. 130:109506. doi: 10.1016/j.diamond.2022.109506.
  • Hakimi-Tehrani MJ, Hassanzadeh-Tabrizi S, Koupaei N, Saffar A, Rafiei M. 2023. Synthesis of Z-scheme g-C3N4/WO3 nano-photocatalyst with superior antibacterial characteristics for wastewater treatment. J Sol-Gel Sci Technol. 105:212–219. doi: 10.1007/s10971-022-05985-9.
  • Hakimi-Tehrani MJ, Hassanzadeh-Tabrizi S, Koupaei N, Saffar-Teluri A, Rafiei M. 2021. Facile thermal synthesis of g–C3N4/ZnO nanocomposite with antibacterial properties for photodegradation of Methylene blue. Mater Res Express. 8:125002. doi: 10.1088/2053-1591/ac3c71.
  • Han S-K. 2023. Basics of wound healing. In: Innovations and advances in wound healing. Berlin, Heidelberg: Springer; p. 1–42.
  • Hanna PM, Mason RP. 1992. Direct evidence for inhibition of free radical formation from Cu (I) and hydrogen peroxide by glutathione and other potential ligands using the EPR spin-trapping technique. Arch Biochem Biophys. 295:205–213. doi: 10.1016/0003-9861(92)90507-s.
  • Harugade A, Sherje AP, Pethe A. 2023. Chitosan: a review on properties, biological activities and recent progress in biomedical applications. React Funct Polym. 191:105634. doi: 10.1016/j.reactfunctpolym.2023.105634.
  • Hassan A, Niazi MBK, Hussain A, Farrukh S, Ahmad T. 2018. Development of anti-bacterial PVA/starch based hydrogel membrane for wound dressing. J Polym Environ. 26:235–243. doi: 10.1007/s10924-017-0944-2.
  • Hassanzadeh-Tabrizi S, Shahi DM. 2023. Synthesis of W/Fe co-doped g-C3N4 decorated with Au nanoparticles for photocatalytic performance. Diamond Relat Mater. 134:109791. doi: 10.1016/j.diamond.2023.109791.
  • Hassanzadeh-Tabrizi S. 2021. Synthesis of NiFe2O4/Ag nanoparticles immobilized on mesoporous g-C3N4 sheets and application for degradation of antibiotics. J Photochem Photobiol A. 418:113398. doi: 10.1016/j.jphotochem.2021.113398.
  • He J, Li Z, Wang J, Li T, Chen J, Duan X, Guo B. 2023. Photothermal antibacterial antioxidant conductive self-healing hydrogel with nitric oxide release accelerates diabetic wound healing. Composites B Eng. 266:110985. doi: 10.1016/j.compositesb.2023.110985.
  • He L, Di D, Chu X, Liu X, Wang Z, Lu J, Wang S, Zhao Q. 2023. Photothermal antibacterial materials to promote wound healing. J Control Release. 363:180–200. doi: 10.1016/j.jconrel.2023.09.035.
  • Heidari BS, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. 2023. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater. 19:179–197. doi: 10.1016/j.bioactmat.2022.04.003.
  • Hosseinnejad M, Jafari SM. 2016. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 85:467–475. doi: 10.1016/j.ijbiomac.2016.01.022.
  • Hou T, Sana SS, Li H, Xing Y, Nanda A, Netala VR, Zhang Z. 2022. Essential oils and its antibacterial, antifungal and anti-oxidant activity applications: a review. Food Biosci. 47:101716. doi: 10.1016/j.fbio.2022.101716.
  • Hu F, Xia S-S, He Y, Huang Z-L, Ke H, Liao J-Z. 2022. Reactive organic radical-doped Ag (I)-based coordination compounds for highly efficient antibacterial wound therapy. Colloids Surf B Biointerfaces. 213:112425. doi: 10.1016/j.colsurfb.2022.112425.
  • Hu Q, Nie Y, Xiang J, Xie J, Si H, Li D, Zhang S, Li M, Huang S. 2023. Injectable sodium alginate hydrogel loaded with plant polyphenol-functionalized silver nanoparticles for bacteria-infected wound healing. Int J Biol Macromol. 234:123691. doi: 10.1016/j.ijbiomac.2023.123691.
  • Iber BT, Kasan NA, Torsabo D, Omuwa JW. 2022. A review of various sources of chitin and chitosan in nature. J Renew Mater. 10:1097–1123. doi: 10.32604/jrm.2022.018142.
  • Jagdale S, Dixit A, Gaware S, Agarwal B. 2023. Chitosan as excellent bio-macromolecule with myriad of anti-activities in biomedical applications–A review. Int J Biol Macromol. 257:128697. doi: 10.1016/j.ijbiomac.2023.128697.
  • Jiang A, Chen X, Xu Y, Shah KJ, You Z. 2023. One-step hydrothermal generation of oxygen-deficient N-doped blue TiO2–Ti3C2 for degradation of pollutants and antibacterial properties. Environ Res. 235:116657. doi: 10.1016/j.envres.2023.116657.
  • Kalaycıoğlu Z, Kahya N, Adımcılar V, Kaygusuz H, Torlak E, Akın-Evingür G, Erim FB. 2020. Antibacterial nano cerium oxide/chitosan/cellulose acetate composite films as potential wound dressing. Eur Polym J. 133:109777. doi: 10.1016/j.eurpolymj.2020.109777.
  • Kotrange H, Najda A, Bains A, Gruszecki R, Chawla P, Tosif MM. 2021. Metal and metal oxide nanoparticle as a novel antibiotic carrier for the direct delivery of antibiotics. Int J Mol Sci. 22:9596. doi: 10.3390/ijms22179596.
  • Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, Fernandez C, Ruttkay-Nedecky B, Nguyen HV, Farid A, et al. 2020. Silver nanomaterials for wound dressing applications. Pharmaceutics. 12:821. doi: 10.3390/pharmaceutics12090821.
  • Kucekova Z, Humpolicek P, Kasparkova V, Perecko T, Lehocký M, Hauerlandová I, Sáha P, Stejskal J. 2014. Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf B Biointerfaces. 116:411–417. doi: 10.1016/j.colsurfb.2014.01.027.
  • Kucekova Z, Kasparkova V, Humpolicek P, Sevcikova P, Stejskal J. 2013. Antibacterial properties of polyaniline-silver films. Chem Pap. 67:1103–1108. doi: 10.2478/s11696-013-0385-x.
  • Kunat-Budzyńska M, Rysiak A, Wiater A, Grąz M, Andrejko M, Budzyński M, Bryś MS, Sudziński M, Tomczyk M, Gancarz M, et al. 2023. Chemical composition and antimicrobial activity of new honey varietals. Int J Environ Res Public Health. 20:2458. doi: 10.3390/ijerph20032458.
  • Laios K, Lytsikas-Sarlis P, Manes K, Kontaxaki M, Karamanou M, Androutsos G. 2019. Drugs for mental illnesses in ancient Greek medicine. Psychiatriki. 30:58–65. doi: 10.22365/jpsych.2019.301.58.
  • Laurano R, Boffito M, Ciardelli G, Chiono V. 2022. Wound dressing products: a translational investigation from the bench to the market. Eng Regen. 3:182–200. doi: 10.1016/j.engreg.2022.04.002.
  • Lee N-Y, Ko W-C, Hsueh P-R. 2019. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front Pharmacol. 10:1153. doi: 10.3389/fphar.2019.01153.
  • Liang X, Sun M, Li L, Qiao R, Chen K, Xiao Q, Xu F. 2012. Preparation and antibacterial activities of polyaniline/Cu 0.05 Zn 0.95 O nanocomposites. Dalton Trans. 41:2804–2811. doi: 10.1039/c2dt11823h.
  • Liang Y, Liang Y, Zhang H, Guo B. 2022. Antibacterial biomaterials for skin wound dressing. Asian J Pharm Sci. 17:353–384. doi: 10.1016/j.ajps.2022.01.001.
  • Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, et al. 2021. Membrane-disruptive peptides/peptidomimetics-based therapeutics: promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B. 11:2609–2644. doi: 10.1016/j.apsb.2021.07.014.
  • Lin P-H, Sermersheim M, Li H, Lee PH, Steinberg SM, Ma J. 2017. Zinc in wound healing modulation. Nutrients. 10:16. doi: 10.3390/nu10010016.
  • Liu D, Qiu J, Xu R, Liu J, Feng J, Ouyang L, Qian S, Qiao Y, Liu X. 2022. β-CD/PEI/PVA composite hydrogels with superior self-healing ability and antibacterial activity for wound healing. Compo B Eng. 238:109921. doi: 10.1016/j.compositesb.2022.109921.
  • Liu M, Li J, Li B. 2018. Mannose-modificated polyethylenimine: a specific and effective antibacterial agent against Escherichia coli. Langmuir. 34:1574–1580. doi: 10.1021/acs.langmuir.7b03556.
  • Liu W, Pei W, Moradi M, Zhao D, Li Z, Zhang M, Xu D, Wang F. 2022. Polyethyleneimine functionalized mesoporous magnetic nanoparticles with enhanced antibacterial and antibiofilm activity in an alternating magnetic field. ACS Appl Mater Interfaces. 14:18794–18805. doi: 10.1021/acsami.1c24148.
  • Liu X, Gao L, Fu S, Zhao W, Wang F, Gao J, Li C, Wu H, Wang L. 2023. Polycaprolactone nanofiber-alginate hydrogel interpenetrated skin substitute for regulation of wound-substitute interface. Mater Design. 227:111706. doi: 10.1016/j.matdes.2023.111706.
  • Liu X, Pan X, Wang C, Liu H. 2023. Modulation of reactive oxygen species to enhance sonodynamic therapy. Particuology. 75:199–216. doi: 10.1016/j.partic.2022.08.001.
  • Liu Y, Song S, Liu S, Zhu X, Wang P. 2022. Application of nanomaterial in hydrogels related to wound healing. J Nanomater. 2022:1–11. doi: 10.1155/2022/4656037.
  • Ma X, Zhou S, Xu X, Du Q. 2022. Copper-containing nanoparticles: mechanism of antimicrobial effect and application in dentistry-a narrative review. Front Surg. 9:905892. doi: 10.3389/fsurg.2022.905892.
  • Mączka W, Twardawska M, Grabarczyk M, Wińska K. 2023. Carvacrol—A natural phenolic compound with antimicrobial properties. Antibiotics. 12:824. doi: 10.3390/antibiotics12050824.
  • Maliki M, Ifijen IH, Ikhuoria EU, Jonathan EM, Onaiwu GE, Archibong UD, Ighodaro A. 2022. Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. Int Nano Lett. 12:379–398. doi: 10.1007/s40089-022-00380-2.
  • Malone M, Schultz G. 2022. Challenges in the diagnosis and management of wound infection. Br J Dermatol. 187:159–166. doi: 10.1111/bjd.21612.
  • Mammari N, Duval RE. 2023. Photothermal/photoacoustic therapy combined with metal-based nanomaterials for the treatment of microbial infections. Microorganisms. 11:2084. doi: 10.3390/microorganisms11082084.
  • Mandla S, Davenport Huyer L, Radisic M. 2018. Multimodal bioactive material approaches for wound healing. APL Bioeng. 2:021503. doi: 10.1063/1.5026773.
  • Manzanares D, Ceña V. 2020. Endocytosis: the nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics. 12:371. doi: 10.3390/pharmaceutics12040371.
  • Maruthapandi M, Saravanan A, Gupta A, Luong JH, Gedanken A. 2022. Antimicrobial activities of conducting polymers and their composites. Macromol. 2:78–99. doi: 10.3390/macromol2010005.
  • May A, Kopecki Z, Carney B, Cowin A. 2022. Antimicrobial silver dressings: a review of emerging issues for modern wound care. ANZ J Surg. 92:379–384. doi: 10.1111/ans.17382.
  • Maywald M, Rink L. 2022. Zinc in human health and infectious diseases. Biomolecules. 12:1748. doi: 10.3390/biom12121748.
  • Melamed E, Kiambi P, Okoth D, Honigber I, Tamir E, Borkow G. 2021. Healing of chronic wounds by copper oxide-impregnated wound dressings—Case series. Medicina. 57:296. doi: 10.3390/medicina57030296.
  • Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. 2023. Effect of size, shape and surface functionalization on the antibacterial activity of silver nanoparticles. J Funct Biomater. 14:244. doi: 10.3390/jfb14050244.
  • Minden-Birkenmaier BA, Bowlin GL. 2018. Honey-based templates in wound healing and tissue engineering. Bioengineering. 5:46. doi: 10.3390/bioengineering5020046.
  • Mitchell K, Panicker SS, Adler CL, O'Toole GA, Hixon KR. 2023. Antibacterial efficacy of Manuka honey-doped chitosan-gelatin cryogel and hydrogel scaffolds in reducing infection. Gels. 9:877. doi: 10.3390/gels9110877.
  • Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferrannini E, Cusi K, Mandarino LJ, DeFronzo RA. 2001. Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care. 24:710–719. doi: 10.2337/diacare.24.4.710.
  • Mobed A, Hasanzadeh M, Seidi F. 2021. Anti-bacterial activity of gold nanocomposites as a new nanomaterial weapon to combat photogenic agents: recent advances and challenges. RSC Adv. 11:34688–34698. doi: 10.1039/d1ra06030a.
  • Molan PC, Rhodes T. 2015. Honey: a biologic wound dressing. Wounds. 27(6):141–151.
  • More PR, Pandit S, Filippis AD, Franci G, Mijakovic I, Galdiero M. 2023. Silver nanoparticles: bactericidal and mechanistic approach against drug resistant pathogens. Microorganisms. 11:369. doi: 10.3390/microorganisms11020369.
  • Mostafavi Esfahani M, Koupaei N, Hassanzadeh-Tabrizi SA. 2023. Synthesis and characterization of polyvinyl alcohol/dextran/Zataria wound dressing with superior antibacterial and antioxidant properties. Vinyl Addit Techn. 29:380–394. doi: 10.1002/vnl.21992.
  • Muhrbeck M, Wladis A, Lampi M, Andersson P, Junker JP. 2022. Efficacy of topical honey compared to systemic gentamicin for treatment of infected war wounds in a porcine model: a non-inferiority experimental pilot study. Injury. 53:381–392. doi: 10.1016/j.injury.2021.10.019.
  • Musin E. 2016. Paper deacidification and preservation using zinc aluminium and titanium oxides atomic layer deposition. JVSTA. 30(1):01A117–01A117-5
  • Mutalik C, Okoro G, Krisnawati DI, Jazidie A, Rahmawati EQ, Rahayu D, Hsu W-T, Kuo T-R. 2022. Copper sulfide with morphology-dependent photodynamic and photothermal antibacterial activities. J Colloid Interface Sci. 607:1825–1835. doi: 10.1016/j.jcis.2021.10.019.
  • Mutlu N, Liverani L, Kurtuldu F, Galusek D, Boccaccini AR. 2022. Zinc improves antibacterial, anti-inflammatory and cell motility activity of chitosan for wound healing applications. Int J Biol Macromol. 213:845–857. doi: 10.1016/j.ijbiomac.2022.05.199.
  • Nader RA, Mackieh R, Wehbe R, El Obeid D, Sabatier JM, Fajloun Z. 2021. Beehive products as antibacterial agents: a review. Antibiotics. 10:717. doi: 10.3390/antibiotics10060717.
  • Natarajan TS, Tsai C-H, Huang H-L, Ho K-S, Lin I, Wang Y-F. 2016. Fabrication of polyaniline coated plasma modified polypropylene filter for antibioaerosol application. Aerosol Air Qual Res. 16:1911–1921. doi: 10.4209/aaqr.2016.04.0167.
  • Nqoro X, Alven S, Buyana B, Feketshane Z, Aderibigbe B. 2022. Alginate-based wound dressings for skin healing and regeneration. In: Sah MK, editor. Natural polymers in wound healing and repair. Netherlands: Elsevier; p. 381–416.
  • Pancu DF, Scurtu A, Macasoi IG, Marti D, Mioc M, Soica C, Coricovac D, Horhat D, Poenaru M, Dehelean C. 2021. Antibiotics: conventional therapy and natural compounds with antibacterial activity—A pharmaco-toxicological screening. Antibiotics. 10:401. doi: 10.3390/antibiotics10040401.
  • Pang Q, Jiang Z, Wu K, Hou R, Zhu Y. 2023. Nanomaterials-based wound dressing for advanced management of infected wound. Antibiotics. 12:351. doi: 10.3390/antibiotics12020351.
  • Patel P, Thanki A, Viradia D, Shah P. 2023. Honey-based silver sulfadiazine microsponge-loaded hydrogel: in vitro and in vivo evaluation for burn wound healing. Curr Drug Deliv. 20:608–628. doi: 10.2174/1567201819666220516092359.
  • Penders J, Stolzoff M, Hickey DJ, Andersson M, Webster TJ. 2017. Shape-dependent antibacterial effects of non-cytotoxic gold nanoparticles. Int J Nanomed. 12:2457–2468. doi: 10.2147/IJN.S124442.
  • Peng W, Li D, Dai K, Wang Y, Song P, Li H, Tang P, Zhang Z, Li Z, Zhou Y, et al. 2022. Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol. 208:400–408. doi: 10.1016/j.ijbiomac.2022.03.002.
  • Polefka T, Bianchini R, Shapiro S. 2012. Interaction of mineral salts with the skin: a literature survey. Int J Cosmet Sci. 34:416–423. doi: 10.1111/j.1468-2494.2012.00731.x.
  • Qiao L, Liang Y, Chen J, Huang Y, Alsareii SA, Alamri AM, Harraz FA, Guo B. 2023. Antibacterial conductive self-healing hydrogel wound dressing with dual dynamic bonds promotes infected wound healing. Bioact Mater. 30:129–141. doi: 10.1016/j.bioactmat.2023.07.015.
  • Rabiee N, Ahmadi S, Akhavan O, Luque R. 2022. Silver and gold nanoparticles for antimicrobial purposes against multi-drug resistance bacteria. Materials. 15:1799. doi: 10.3390/ma15051799.
  • Racovita S, Popa M, Atanase LI, Vasiliu S. 2022. Synthetic macromolecules with biological activity. In: Nayak AK, editor. Biological Macromolecules. USA: Elsevier; p. 305–335.
  • Radmanesh S, Shabangiz S, Koupaei N, Hassanzadeh-Tabrizi S. 2022. 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. J Polym Res. 29:50. doi: 10.1007/s10965-022-02899-6.
  • Rafizadeh-Sourki M, Hassanzadeh-Tabrizi S. 2022. Facile synthesis of Zn0.5Ni0.5Fe2O4/carbon nanocomposite for hyperthermia and drug delivery applications. Diamond Relat Mater. 125:108993. doi: 10.1016/j.diamond.2022.108993.
  • Raghupathi KR, Koodali RT, Manna AC. 2011. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir. 27:4020–4028. doi: 10.1021/la104825u.
  • Rahimi M, Hassanzadeh Tabrizi S, Aminsharei F. 2022. Fabrication and antibacterial properties of TFC membrane modified with cellulose/copper oxide nanoparticles for removal of cadmium from water. Sep Sci Technol. 57:1762–1774. doi: 10.1080/01496395.2021.2002893.
  • Rai D, Singh JK, Roy N, Panda D. 2008. Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. Biochem J. 410:147–155. doi: 10.1042/BJ20070891.
  • Rasool A, Ata S, Islam A. 2019. Stimuli responsive biopolymer (chitosan) based blend hydrogels for wound healing application. Carbohydr Polym. 203:423–429. doi: 10.1016/j.carbpol.2018.09.083.
  • Reena K, Singh L, Sharma S. 2022. Curcumin: a review of its’ efficacy in the management of psoriasis. DDL. 12:163–183. doi: 10.2174/2210303112666220428101738.
  • Rehman H, Ali W, Khan NZ, Aasim M, Khan T, Khan AA. 2023. Delphinium uncinatum mediated biosynthesis of zinc oxide nanoparticles and in-vitro evaluation of their antioxidant, cytotoxic, antimicrobial, anti-diabetic, anti-inflammatory, and anti-aging activities. Saudi J Biol Sci. 30:103485. doi: 10.1016/j.sjbs.2022.103485.
  • Ren Y, Yan B, Lin C, Wang P, Zhou M, Cui L, Yu Y, Wang Q. 2023. Multifunctional textile constructed via polyaniline-mediated copper sulfide nanoparticle growth for rapid photothermal antibacterial and antioxidation applications. ACS Appl Nano Mater. 6:1212–1223. doi: 10.1021/acsanm.2c04797.
  • Robertson E, Hixon K, McBride‐Gagyi S, Sell S. 2023. Bioactive impact of Manuka honey and bone char incorporated into gelatin and chitosan cryogels in a rat calvarial fracture model. J Biomed Mater Res. 111:1763–1774. doi: 10.1002/jbm.b.35283.
  • Robertson J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Swift S. 2018. The antimicrobial action of polyaniline involves production of oxidative stress while functionalisation of polyaniline introduces additional mechanisms. PeerJ. 6:e5135. doi: 10.7717/peerj.5135.
  • Roohani N, Hurrell R, Kelishadi R, Schulin R. 2013. Zinc and its importance for human health: an integrative review. J Res Med Sci. 18:144.
  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4:707–716. doi: 10.1016/j.actbio.2007.11.006.
  • Rusu A, Munteanu A-C, Arbănași E-M, Uivarosi V. 2023. Overview of side-effects of antibacterial fluoroquinolones: new drugs versus old drugs, a step forward in the safety profile? Pharmaceutics. 15:804. doi: 10.3390/pharmaceutics15030804.
  • Saebnoori E, Koupaei N, Hassanzadeh Tabrizi S. 2022. The solution plasma synthesis, characterisation, and antibacterial activities of dispersed CuO nanoparticles. Mater Technol. 37:1220–1229. doi: 10.1080/10667857.2021.1929719.
  • Salehi B, Rodrigues CF, Peron G, Dall’Acqua S, Sharifi-Rad J, Azmi L, Shukla I, Singh Baghel U, Prakash Mishra A, Elissawy AM, et al. 2021. Curcumin nanoformulations for antimicrobial and wound healing purposes. Phytother Res. 35:2487–2499. doi: 10.1002/ptr.6976.
  • Salehi-Abari M, Koupaei N, Hassanzadeh-Tabrizi S. 2020. Synthesis and characterisation of semi-interpenetrating network of polycaprolactone/polyethylene glycol diacrylate/zeolite-CuO as wound dressing. Mater Technol. 35:290–299. doi: 10.1080/10667857.2019.1678088.
  • Salmanian G, Hassanzadeh-Tabrizi S, Koupaei N. 2021. Magnetic chitosan nanocomposites for simultaneous hyperthermia and drug delivery applications: a review. Int J Biol Macromol. 184:618–635. doi: 10.1016/j.ijbiomac.2021.06.108.
  • Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. 2022. Nanoparticles, a double-edged sword with oxidant as well as antioxidant properties—A review. Oxygen. 2:591–604. doi: 10.3390/oxygen2040039.
  • Sandoval C, Ríos G, Sepúlveda N, Salvo J, Souza-Mello V, Farías J. 2022. Effectiveness of copper nanoparticles in wound healing process using in vivo and in vitro studies: a systematic review. Pharmaceutics. 14:1838. doi: 10.3390/pharmaceutics14091838.
  • Schnitzler P, Neuner A, Nolkemper S, Zundel C, Nowack H, Sensch KH, Reichling J. 2010. Antiviral activity and mode of action of propolis extracts and selected compounds. Phytother Res. 24:S20–S28. doi: 10.1002/ptr.2868.
  • Shahbaz M, Imran M, Hussain M, Alsagaby SA, Momal U, Naeem H, Abdelgawad MA, El-Ghorab AH, Al Abdulmonem W, Waqar AB, et al. 2023. Curcumin: a bioactive compound with molecular targets for human malignancies. Food Agric Immunol. 34:2280524. doi: 10.1080/09540105.2023.2280524.
  • Shahid MA, Ali A, Uddin MN, Miah S, Islam SM, Mohebbullah M, Jamal MSI. 2021. Antibacterial wound dressing electrospun nanofibrous material from polyvinyl alcohol, honey and Curcumin longa extract. J Ind Text. 51:455–469. doi: 10.1177/1528083720904379.
  • Shao L, Majumder S, Liu Z, Xu K, Dai R, George S. 2022. Light activation of gold nanorods but not gold nanospheres enhance antibacterial effect through photodynamic and photothermal mechanisms. J Photochem Photobiol B. 231:112450. doi: 10.1016/j.jphotobiol.2022.112450.
  • Sharma A, Gumber K, Gohain A, Bhatia T, Sohal HS, Mutreja V, Bhardwaj G. 2023. Importance of essential oils and current trends in use of essential oils (aroma therapy, agrofood, and medicinal usage). In: Nayik GA, Ansari MS, editors. Essential oils. USA: Elsevier; p. 53–83.
  • Sharmeen JB, Mahomoodally FM, Zengin G, Maggi F. 2021. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules. 26:666. doi: 10.3390/molecules26030666.
  • Shedoeva A, Leavesley D, Upton Z, Fan C. 2019. Wound healing and the use of medicinal plants. Evid-Based Complement Altern Med. 2019:1–30. doi: 10.1155/2019/2684108.
  • Sheng Y, Narayanan M, Basha S, Elfasakhany A, Brindhadevi K, Xia C, Pugazhendhi A. 2022. In vitro and in vivo efficacy of green synthesized AgNPs against Gram negative and Gram positive bacterial pathogens. Process Biochem. 112:241–247. doi: 10.1016/j.procbio.2021.12.012.
  • Shete B, Gulhane R, Hantodkar R. 2022. A comprehensive review on wound dressings and their comparative effectiveness on healing of contaminated wounds and ulcers. Arch Anesthesiol Crit Care. 8:151–158.
  • Siddiqui AR, Bernstein JM. 2010. Chronic wound infection: facts and controversies. Clin Dermatol. 28:519–526. doi: 10.1016/j.clindermatol.2010.03.009.
  • Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. 2018. Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm. 127:130–141. doi: 10.1016/j.ejpb.2018.02.022.
  • Singh C, Mehata,AK, Priya V, Malik AK, Setia A, Suseela MNL, Gokul P, Singh SK, Muthu MS, Vikas, Samridhi. 2022. Bimetallic Au–Ag nanoparticles: advanced nanotechnology for tackling antimicrobial resistance. Molecules;27:7059. doi: 10.3390/molecules27207059.
  • Smith AM, Moxon S, Morris G. 2016. Biopolymers as wound healing materials. In: Ågren MS, editor. Wound healing biomaterials. UK: Elsevier; p. 261–287.
  • Soleimani M, Arzani A, Arzani V, Roberts TH. 2022. Phenolic compounds and antimicrobial properties of mint and thyme. J Herb Med. 36:100604. doi: 10.1016/j.hermed.2022.100604.
  • Soraci L, Cherubini A, Paoletti L, Filippelli G, Luciani F, Laganà P, Gambuzza ME, Filicetti E, Corsonello A, Lattanzio F. 2023. Safety and tolerability of antimicrobial agents in the older patient. Drugs Aging. 40:499–526. doi: 10.1007/s40266-023-01019-3.
  • Tang S, Zheng J. 2018. Antibacterial activity of silver nanoparticles: structural effects. Adv Healthc Mater. 7:e1701503. doi: 10.1002/adhm.201701503.
  • Tang S-p, Mao X-l, Chen Y-h, Yan L-l, Ye L-p, Li S-w 2022. Reactive oxygen species induce fatty liver and ischemia-reperfusion injury by promoting inflammation and cell death. Front Immunol. 13:870239. doi: 10.3389/fimmu.2022.870239.
  • Tashkandi H. 2021. Honey in wound healing: an updated review. Open Life Sci. 16:1091–1100. doi: 10.1515/biol-2021-0084.
  • Teh YC, Chooi MY, Liu D, Kwok I, Lai GC, Ayub Ow Yong L, Ng M, Li JLY, Tan Y, Evrard M, et al. 2022. Transitional premonocytes emerge in the periphery for host defense against bacterial infections. Sci Adv. 8:eabj4641. doi: 10.1126/sciadv.abj4641.
  • Thakur A, Sharma A, Alajangi HK, Jaiswal PK, Lim Y-b, Singh G, Barnwal RP. 2022. In pursuit of next-generation therapeutics: antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications. Int J Biol Macromol. 218:135–156. doi: 10.1016/j.ijbiomac.2022.07.103.
  • Tiwari AK, Gupta MK, Pandey G, Narayan RJ, Pandey PC. 2020. Molecular weight of polyethylenimine-dependent transfusion and selective antimicrobial activity of functional silver nanoparticles. J Mater Res. 35:2405–2415. doi: 10.1557/jmr.2020.183.
  • Troy E, Tilbury MA, Power AM, Wall JG. 2021. Nature-based biomaterials and their application in biomedicine. Polymers. 13:3321. doi: 10.3390/polym13193321.
  • Unalan I, Endlein SJ, Slavik B, Buettner A, Goldmann WH, Detsch R, Boccaccini AR. 2019. Evaluation of electrospun poly (ε-caprolactone)/gelatin nanofiber mats containing clove essential oil for antibacterial wound dressing. Pharmaceutics. 11:570. doi: 10.3390/pharmaceutics11110570.
  • Vasile BS, Birca AC, Musat MC, Holban AM. 2020. Wound dressings coated with silver nanoparticles and essential oils for the management of wound infections. Materials. 13:1682. doi: 10.3390/ma13071682.
  • Venkatasubbu GD, Anusuya T. 2017. Investigation on curcumin nanocomposite for wound dressing. Int J Biol Macromol. 98:366–378. doi: 10.1016/j.ijbiomac.2017.02.002.
  • Wang A, Duan S, Hu Y, Ding X, Xu F-J. 2022. Fluorination of polyethylenimines for augmentation of antibacterial potency via structural damage and potential dissipation of bacterial membranes. ACS Appl Mater Interfaces. 14:44173–44182. doi: 10.1021/acsami.2c12692.
  • Wang L, Zhao X, Zhu C, Zhao Y, Liu S, Xia X, Liu X, Zhang H, Xu Y, Hang B, et al. 2020. The antimicrobial peptide MPX kills Actinobacillus pleuropneumoniae and reduces its pathogenicity in mice. Vet Microbiol. 243:108634. doi: 10.1016/j.vetmic.2020.108634.
  • Wang T, Zhu X-K, Xue X-T, Wu D-Y. 2012. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym. 88:75–83. doi: 10.1016/j.carbpol.2011.11.069.
  • Wang W, Shi Y, Lin G, Tang B, Li X, Zhang J, Ding X, Zhou G. 2023. Advances in mechanical properties of hydrogels for cartilage tissue defect repair. Macromol Biosci. 23:e2200539. doi: 10.1002/mabi.202200539.
  • Wang WB, Clapper JC. 2022. Antibacterial activity of electrospun polyacrylonitrile copper nanoparticle nanofibers on antibiotic resistant pathogens and methicillin resistant Staphylococcus aureus (MRSA). Nanomaterials. 12:2139. doi: 10.3390/nano12132139.
  • Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. 2019. Essential oils as antimicrobial agents—Myth or real alternative? Molecules. 24:2130. doi: 10.3390/molecules24112130.
  • Wu S, Li A, Zhao X, Zhang C, Yu B, Zhao N, Xu F-J. 2019. Silica-coated gold–silver nanocages as photothermal antibacterial agents for combined anti-infective therapy. ACS Appl Mater Interfaces. 11:17177–17183. doi: 10.1021/acsami.9b01149.
  • Wu X, Singh AK, Wu X, Lyu Y, Bhunia AK, Narsimhan G. 2016. Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Colloids Surf B Biointerfaces. 143:194–205. doi: 10.1016/j.colsurfb.2016.03.037.
  • Xiang Y, Mao C, Liu X, Cui Z, Jing D, Yang X, Liang Y, Li Z, Zhu S, Zheng Y, et al. 2019. Rapid and superior bacteria killing of carbon quantum dots/ZnO decorated injectable folic acid‐conjugated PDA hydrogel through dual‐light triggered ROS and membrane permeability. Small. 15:e1900322. doi: 10.1002/smll.201900322.
  • Xie Y, Qian Y, Li Z, Liang Z, Liu W, Yang D, Qiu X. 2021. Near-infrared-activated efficient bacteria-killing by lignin-based copper sulfide nanocomposites with an enhanced photothermal effect and peroxidase-like activity. ACS Sustainable Chem Eng. 9:6479–6488. doi: 10.1021/acssuschemeng.1c01589.
  • Xu M, Wu S, Ding L, Lu C, Qian H, Qu J, Chen Y. 2023. Engineering ultrasound-activated piezoelectric hydrogels with antibacterial activity to promote wound healing. J Mater Chem B. 11:4318–4329. doi: 10.1039/d3tb00284e.
  • Yang Y, Li M, Pan G, Chen J, Guo B. 2023. Multiple stimuli‐responsive nanozyme‐based cryogels with controlled NO release as self‐adaptive wound dressing for infected wound healing. Adv Funct Mater. 33:2214089. doi: 10.1002/adfm.202214089.
  • Yassin MT, Mostafa AA-F, Al-Askar AA, Al-Otibi FO. 2022. Synergistic antibacterial activity of green synthesized silver nanomaterials with colistin antibiotic against multidrug-resistant bacterial pathogens. Crystals. 12:1057. doi: 10.3390/cryst12081057.
  • Yilmaz Atay H. 2019. Antibacterial activity of chitosan-based systems. In: Jana S, editor. Functional chitosan: drug delivery and biomedical applications. Springer Nature; p. 457–489.
  • Yupanqui Mieles J, Vyas C, Aslan E, Humphreys G, Diver C, Bartolo P. 2022. Honey: an advanced antimicrobial and wound healing biomaterial for tissue engineering applications. Pharmaceutics. 14:1663. doi: 10.3390/pharmaceutics14081663.
  • Zarei N, Hassanzadeh-Tabrizi S. 2023. Alginate/hyaluronic acid-based systems as a new generation of wound dressings: a review. Int J Biol Macromol. 253:127249. doi: 10.1016/j.ijbiomac.2023.127249.
  • Zelmer AR, Nelson R, Richter K, Atkins GJ. 2022. Can intracellular Staphylococcus aureus in osteomyelitis be treated using current antibiotics? A systematic review and narrative synthesis. Bone Res. 10:53. doi: 10.1038/s41413-022-00227-8.
  • Zhang H, Cheng J, Ao Q. 2021. Preparation of alginate-based biomaterials and their applications in biomedicine. Mar Drugs. 19:264. doi: 10.3390/md19050264.
  • Zhao Y, Wang S, Ding Y, Zhang Z, Huang T, Zhang Y, Wan X, Wang ZL, Li L. 2022. Piezotronic effect-augmented Cu2–xO–BaTiO3 sonosensitizers for multifunctional cancer dynamic therapy. ACS Nano. 16:9304–9316. doi: 10.1021/acsnano.2c01968.
  • Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H, Huang L. 2020. Antibacterial mechanism of curcumin: A review. Chem Biodivers. 17:e2000171. doi: 10.1002/cbdv.202000171.
  • Zhou L, Min T, Bian X, Dong Y, Zhang P, Wen Y. 2022. Rational design of intelligent and multifunctional dressing to promote acute/chronic wound healing. ACS Appl Bio Mater. 5:4055–4085. doi: 10.1021/acsabm.2c00500.
  • Zhou Z, Yan D, Cheng X, Kong M, Liu Y, Feng C, Chen X. 2016. Biomaterials based on N, N, N-trimethyl chitosan fibers in wound dressing applications. Int J Biol Macromol. 89:471–476. doi: 10.1016/j.ijbiomac.2016.02.036.
  • Zhu Z, Gou X, Liu L, Xia T, Wang J, Zhang Y, Huang C, Zhi W, Wang R, Li X, et al. 2023. Dynamically evolving piezoelectric nanocomposites for antibacterial and repair-promoting applications in infected wound healing. Acta Biomater. 157:566–577. doi: 10.1016/j.actbio.2022.11.061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.