84
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

A nonorthogonal tight-binding model for hydrocarbon molecules and nanostructures

, &
Pages 703-709 | Received 01 Jan 2006, Accepted 01 Jun 2006, Published online: 15 Aug 2007

References

  • Ohno , K. , Esfarjani , K. and Kawazoe , Y. 1999 . Computational Materials Science , Berlin : Springer .
  • Payne , M.C. , Teter , M.T. , Allen , D.C. , Arias , T.A. and Joannopoulos , J.D. 1992 . Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients . Rev. Mod. Phys. , 64 : 1045
  • Rappe , A.K. , Casewit , C.J. , Colwell , K.S. , Goddard , W.A. III and Skiff , W.M. 1992 . UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations . J. Am. Chem. Soc. , 114 : 10024
  • Tersoff , J. 1989 . Modeling solid-state chemistry: interatomic potentials for multicomponent systems . Phys. Rev. B , 39 : 5566
  • Brenner , D.W. 1990 . Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films . Phys. Rev. B , 42 : 9458
  • Goedcker , S. 1999 . Linear scaling electronic structure methods . Rev. Mod. Phys. , 71 : 1085
  • Wu , S.Y. and Jayanthi , C.S. 2002 . Order-N methodologies and their applications . Phys. Rep. , 358 : 1
  • Chadi , D.J. 1979 . Atomic and electronic structures of reconstructed Si(100) surfaces . Phys. Rev. Lett. , 43 : 43
  • Slater , P.C. and Koster , G.F. 1954 . Simplified LCAO method for the periodic potential problem . Phys. Rev. , 94 : 1498
  • Wang , C.Z. and Ho , K.M. 1996 . “ Tight-binding molecular dynamics studies of covalent systems ” . In Advances in Chemical Physics , Edited by: Prigogine , I. and Rice , S.A. Vol. XCIII , 651 New York : John Wiley & Sones, Inc. .
  • Goringe , C.M. , Bowler , D.R. and Herhandez , E. 1997 . Tight-binding modelling of materials . Rep. Prog. Phys. , 60 : 1447
  • Mehl , M.J. and Papaconstantopoulos , D.A. 1998 . “ Chapter V ” . In Topics in Computational Materials Science , Edited by: Fong , C.Y. 169 Singapore : World Scientific .
  • Zhao , J.J. , Wang , J.L. and Wang , G.H. 2000 . A transferable nonorthogonal tight-binding model of germanium: application to small clusters . Phys. Lett. A , 275 : 281
  • Davidson , B.N. and Pickett , W.E. 1994 . Tight-binding study of hydrogen on the C(111), C(100), and C(110) diamond surfaces . Phys. Rev. B , 49 : 11253
  • Wang , Y. and Mak , C.H. 1995 . Transferable tight-bonding potential for hydrocarbons . Chem. Phys. Lett. , 235 : 37
  • Horsfield , A.P. , Godwin , P.D. , Pettifor , D.G. and Sutton , A.P. 1996 . Computational materials synthesis. I. A tight-binding scheme for hydrocarbons . Phys. Rev. B , 54 : 15773
  • Winn , M.D. , Rassinger , M. and Haffner , J. 1997 . Tight-binding potential for hydrocarbons . Phys. Rev. B , 55 : 5364
  • Pan , B.C. 2001 . Tight-binding potential for hydrocarbons . Phys. Rev. B , 64 : 155408
  • Hoffmann , R. 1963 . An extended Hckel theory. I. Hydrocarbons . J. Chem. Phys. , 39 : 1397
  • Calzaferri , G. , Forss , L. and Kamber , I. 1989 . Molecular geometries by the extended Hueckel molecular orbital (EHMO) method . J. Phys. Chem. , 93 : 5366
  • Curotto , E. , Matro , A. , Freeman , D. and Doll , J.D. 1998 . A semi-empirical potential for simulations of transition metal clusters: minima and isomers of Ni n (n = 2–13) and their hydrides . J. Chem. Phys. , 108 : 729
  • Brändle , M. and Calzaferri , G. 1993 . Molecular geometries by the extended-Hückel molecular orbital method II: hydrocarbons and organic molecules containing O, N, and S . Helv. Chim. Acta , 76 : 924
  • Harrison , W. 1980 . Electronic Structures and the Properties of Solids , San Francisco : Freeman .
  • Lu , D. and Nocedal , J. 1989 . On the limited memory BFGS method for large scale optimization . Math. Program. B , 45 : 503
  • Andzelm , J. and Wimmer , E. 1992 . Density functional Gaussian-type-orbital approach to molecular geometries, vibrations, and reaction energies . J. Chem. Phys. , 96 : 1280 and references therein
  • Hehre , W.J. , Radom , L. , Schleyer , P. and Pople , J.A. 1986 . Ab Initio Molecular Orbital Theory , New York : Wiley .
  • Almenningen , A. , Jonvik , T. , Martin , H.D. and Urbanek , T. 1985 . Cubane molecular structure determined by gas-phase electron diffraction . J. Mol. Struct. , 128 : 239
  • Schmidt , M.W. , Baldridge , K.K. , Boatz , J.A. , Elbert , S.T. , Gordon , M.S. , Jensen , J.H. , Koseki , S. , Matsunaga , N. , Nguyen , K.A. , Su , S.J. , Windus , T.L. , Dupuis , M. and Montgomery , J.A. 1993 . General atomic and molecular electronic structure system . J. Comput. Chem. , 14 : 1347
  • Delley , B. 1990 . An all-electron numerical method for solving the local density functional for polyatomic molecules . J. Chem. Phys. , 92 : 508 B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113, 7756 (2000)
  • Perdew , J.P. and Wang , Y. 1992 . Accurate and simple analytic representation of the electron–gas correlation energy . Phys. Rev. B , 45 : 13244
  • Saito , R. , Dresslehaus , G. and Dresselhaus , M.S. 1998 . Physical Properties of Carbon Nanotubes , London : Imperial College Press .
  • Zhao , J.J. , Wen , B. , Zhou , Z. , Chen , Z.F. and Schleyer , P.R. 2005 . Reduced Li diffusion barriers in composite BC3 nanotubes . Chem. Phys. Lett. , 415 : 323
  • Chandra , N. , Namilae , S. and Shet , C. 2004 . Local elastic properties of carbon nanotubes in the presence of Stone–Wales defects . Phys. Rev. B , 69 : 094101 and references therein
  • Lier , G.V. , Alsenoy , C.V. , Doren , V.V. and Geerlings , P. 2000 . Ab initio study of the elastic properties of single-walled carbon nanotubes and graphene . Chem. Phys. Lett. , 326 : 181
  • Chen , Z. , Nagase , S. , Hirsch , A. , Haddon , R.C. , Thiel , W. and Schleyer , P.von R. 2004 . Side-wall opening of single-walled carbon nanotubes (SWCNTs) by chemical modification: a critical theoretical study . Angew. Chem. Int. Ed. , 43
  • Zhao , J.J. , Chen , Z.F. , Zhou , Z. , Park , H. , Schleyer , P.R. and Lu , J.P. 2005 . Engineering the electronic structure of single-walled carbon nanotubes by chemical functionalization . Chem. Phys. Chem. , 6 : 598
  • Chen , Z. , Jiao , H. , Búhl , M. , Hirsch , A. and Thiel , W. 2001 . Theoretical investigation into structures and magnetic properties of smaller fullerenes and their heteroanalogues . Theor. Chem. Acc. , 106 : 352
  • Chen , Z. , Cioslowski , J. , Rao , N. , Moncrieff , D. , Bühl , M. , Hirsch , A. and Thiel , W. 2001 . Endohedral chemical shifts in higher fullerenes with 72–86 carbon atoms . Theor. Chem. Acc. , 106 : 364
  • Chen , Z. and Thiel , W. 2003 . Performance of semiempirical methods in fullerene chemistry: relative energies and nucleus-independent chemical shifts . Chem. Phys. Lett. , 367 : 15
  • Zheng , G. , Irle , S. and Morokuma , K. 2005 . Performance of the DFTB method in comparison to DFT and semiempirical methods for geometries and energies of C20CC86 fullerene isomers . Chem. Phys. Lett. , 412 : 210

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.