541
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Modelling small gold and silver nanoparticles with electronic structure methods

Pages 607-614 | Received 30 Jan 2012, Accepted 24 Feb 2012, Published online: 04 Jul 2012

References

  • Jahn , W. 1999 . Review: Chemical aspects of the use of gold clusters in structural biology . J. Struct. Biol. , 127 : 106 – 112 .
  • Daniel , M.-C. and Astruc , D. 2004 . Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology . Chem. Rev. , 104 : 293 – 346 .
  • Schaaff , T.G. , Shafifullin , M.N. , Khoury , J.T. , Vezmar , I. , Whetten , R.L. , Cullen , W.G. , First , P.N. , Gutiérrez-Wing , C. , Ascensio , J. and Jose-Yacamán , M.J. 1997 . Isolation of smaller nanocrystal Au molecules: Robust quantum effects in optical spectra . J. Phys. Chem. B , 101 : 7885 – 7891 .
  • Wyrwas , R.B. , Alvarez , M.M. , Khoury , J.T. , Price , R.C. , Schaaff , T.G. and Whetten , R.L. 2007 . The colours of nanometric gold . Eur. Phys. J. D , 43 : 91 – 95 .
  • Negishi , Y. , Nobusada , K. and Tsukuda , T. 2005 . Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)-thiolate complexes and thiolate-protected gold nanocrystals . J. Am. Chem. Soc. , 127 : 5261 – 5270 .
  • Ingram , R.S. , Hostetler , M.J. , Murray , R.W. , Schaaff , T.G. , Khoury , J.T. , Whetten , R.L. , Bigioni , T.P. , Guthrie , D.K. and First , P.N. 1997 . 28 kDa alkanethiolate-protected au clusters give analogous solution electrochemistry and STM coulomb staircases . J. Am. Chem. Soc. , 119 : 9279 – 9280 .
  • Chen , S. , Ingram , R.S. , Hostetler , M.J. , Pietron , J.J. , Murray , R.W. , Schaaff , T.G. , Khoury , J.T. , Alvarez , M.M. and Whetten , R.L. 1998 . Gold nanoelectrodes of varied size: Transition to molecule-like charging . Science , 280 : 2098 – 2101 .
  • Lee , D. , Donkers , R.L. , DeSimone , J.M. and Murray , R.W. 2003 . Voltammetry and electron-transfer dynamics in a molecular melt of a 1.2 nm metal quantum dot . J. Am. Chem. Soc. , 125 : 1182 – 1183 .
  • Bigioni , T.P. , Whetten , R.L. and Dag , Ö. 2000 . Near-infrared luminescence from small gold nanocrystals . J. Phys. Chem. B , 104 : 6983 – 6986 .
  • Wang , G. , Huang , T. , Murray , R.W. , Menard , L. and Nuzzo , R.G. 2005 . Near-IR luminescence of monolayer-protected metal clusters . J. Am. Chem. Soc. , 127 : 812 – 813 .
  • Shibu , E.S. , Muhammed , M.A.H. , Tsukuda , T. and Pradeep , T. 2008 . Ligand exchange of Au25SG18 leading to functionalized gold clusters: Spectroscopy, kinetics, and luminescence . J. Phys. Chem. C , 112 : 12168 – 12176 .
  • Ramakrishna , G. , Varnavski , O. , Kim , J. , Lee , D. and Goodson , T. 2008 . Quantum-sized gold clusters as efficient two-photon absorbers . J. Am. Chem. Soc. , 130 : 5032 – 5033 .
  • Demartin , F. , Manassero , M. , Naldini , L. , Ruggeri , R. and Sansoni , M. 1981 . Synthesis and X-ray characterization of an Iodine-bridged tetranuclear gold custer, di-mu-iodo-tetrakis(triphenylphosphine)-tetrahedro-tetragold . J. Chem. Soc. Chem. Commun. , : 222 – 223 .
  • Mingos , D.M.P. , Powell , H.R. and Stolberg , T.L. 1992 . Synthesis and structural characterization of the tetrahedral cluster [Au4(PPh3)4(m2-SnCl3)2] . Trans. Met. Chem. , 17 : 334 – 337 .
  • Zeller , E. , Beruda , H. and Schmidbaur , H. 1993 . Tetrahedral gold cluster [Au4]2+: Crystal structure of {[(tBu)3PAu]4}2+(BF4 − )2·2CHCl3 . Inorg. Chem. , 32 : 3203 – 3204 .
  • Yang , Y. and Sharp , P.R. 1994 . New gold clusters [Au8L6](BF4)2 and [(AuL)4](BF4)2 (L = P(mesityl)3) . J. Am. Chem. Soc. , 116 : 6983 – 6984 .
  • van der Velden , J.W.A. , Bour , J.J. , Pet , R. , Bosman , W.P. and Noordik , J.H. 1983 . Preparation and X-ray structure determination of tris[bis(diphenylphosphino) methaneldiiodotetragold . Inorg. Chem. , 22 : 3112 – 3115 .
  • Bellon , P. , Manassero , M. and Sansoni , M. 1973 . An octahedral gold cluster: Crystal and molecular structure of hexakis-[tris-(p-tolyl)phosphine]-octahedro-hexagold Bis(tetraphenylborate) . J. Chem. Soc. Dalton Trans. , : 2423 – 2427 .
  • Scherbaum , F. , Grohmann , A. , Huber , B. , Krüger , C. and Schmidbaur , H. 1988 . Aurophilicity” as a consequence of relativistic effects: The hexakis(triphenylphosphaneaurio)methane dication [(Ph3PAu)6C]2+ . Angew. Chem. Int. Ed. , 27 : 1544 – 1546 .
  • Briant , C.E. , Hall , K.P. and Mingos , D.M.P. 1983 . Synthesis and structural characterization of [Au6(PPh3)6](NO3)2·3CH2Cl2; An edge-shared bitetrahedral gold cluster . J. Organomet. Chem. , 254 : C18 – C20 .
  • van der Velden , J.W.A. , Bour , J.J. , Bosman , W.P. and Noordik , J.H. 1983 . Reactions of cationic gold clusters with lewis bases. Preparation and X-ray structure investigation of [Au8(PPh3)7(NO3)2·2CH2Cl2 and Au6(PPh3)4[Cl(CO)4]2 . Inorg. Chem. , 22 : 1913 – 1918 .
  • van der Velden , J.W.A. , Bour , J.J. , Steggerda , J.J. , Beurskens , P.T. , Roseboom , M. and Noordik , J.H. 1981 . Gold clusters. Tetrakis[1,3-bis(diphenylphosphino)propane]hexagold dinitrate: Preparation, X-ray analysis, and 197Au mossbauer and 31P{1H} NMR spectra . Inorg. Chem. , 21 : 4321 – 4324 .
  • Schulz-Dobrick , M. and Jansen , M.Z. 2007 . Characterization of gold clusters by crystallization with polyoxometalates: The intercluster compounds [Au9(dpph)4][Mo8O26], [Au9(dpph)4[pPW12O40] and [Au11(PPh3)8Cl2]2[W6O19] . Anorg. Allg. Chem. , 633 : 2326 – 2331 .
  • McPartlin , M. , Mason , R. and Malatesta , L. 1969 . Novel cluster complexes of gold(0)-gold(I) . Chem. Commun. , : 334
  • Bellon , P. , Manassero , M. and Sansoni , M. 1972 . Crystal and molecular structure of tri-iodoheptakis(tri-p-fluorophenyl-phosphine)undecagold . J. Chem. Soc. Dalton Trans. , : 1481 – 1487 .
  • Nunokawa , K. , Onaka , S. , Ito , M. , Horibe , M. , Yonezawa , T. , Nishihara , H. , Ozeki , T. , Chiba , H. , Watase , S. and Nakamoto , M. 2006 . Synthesis, single crystal X-ray analysis, and TEM for a single-sized Au11 cluster stabilized by SR ligands: The interface between molecules and particles . J. Organomet. Chem. , 691 : 638 – 642 .
  • Copley , R.C.B. and Mingos , D.M.P. 1996 . The novel structure of the [Au11(PMePh2)10]3+ cation: Crystal structures of [Au11(PMePh2)10][C2B9H12]3·4thf and [Au11(PMePh2)10][C2B9H12]3 (thf = tetrahydrofuran) . J. Chem. Soc. Dalton Trans. , : 479 – 489 .
  • Briant , C.E. , Theobald , B.R.C. , White , J.W. , Bell , L.K. , Mingos , D.M.P. and Welch , A.J. 1981 . Synthesis and X-ray structural characterization of the centred lcosahedral gold cluster compound [Au13(PMe2Ph)10Cl2](PF6)3; the realization of a theoretical prediction . J. Chem. Soc. Chem. Commun. , 5 : 201 – 202 .
  • Heaven , M.W. , Dass , A. , White , P.S. , Holt , K.M. and Murray , R.W. 2008 . Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18] . J. Am. Chem. Soc. , 130 : 3754 – 3755 .
  • Zhu , M. , Aikens , C.M. , Hollander , F.J. , Schatz , G.C. and Jin , R. 2008 . Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties . J. Am. Chem. Soc. , 130 : 5883 – 5885 .
  • Zhu , M. , Eckenhoff , W.T. , Pintauer , T. and Jin , R. 2008 . Conversion of anionic [Au25(SCH2CH2Ph)18]- cluster to charge neutral cluster via air oxidation . J. Phys. Chem. C , 112 : 14221 – 14224 .
  • Qian , H. , Eckenhoff , W.T. , Zhu , Y. , Pintauer , T. and Jin , R. 2010 . Total structure determination of thiolate-protected Au38 nanoparticles . J. Am. Chem. Soc. , 132 : 8280 – 8281 .
  • Jadzinsky , P.D. , Calero , G. , Ackerson , C.J. , Bushnell , D.A. and Kornberg , R.D. 2007 . Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution . Science , 318 : 430 – 433 .
  • Akola , J. , Walter , M. , Whetten , R.L. , Häkkinen , H. and Grönbeck , H. 2008 . On the structure of thiolate-protected Au25 . J. Am. Chem. Soc. , 130 : 3756 – 3757 .
  • Walter , M. , Akola , J. , Lopez-Acevedo , O. , Jadzinsky , P.D. , Calero , G. , Ackerson , C.J. , Whetten , R.L. , Grönbeck , H. and Häkkinen , H. 2008 . A unified view of ligand-protected gold clusters as superatom complexes . Proc. Nat. Acad. Sci. USA , 105 : 9157 – 9162 .
  • de Heer , W.A. 1993 . The physics of simple metal clusters: Experimental aspects and simple models . Rev. Mod. Phys. , 65 : 611 – 676 .
  • Lopez-Acevedo , O. , Tsunoyama , H. , Tsukuda , T. , Häkkinen , H. and Aikens , C.M. 2010 . Chirality and electronic structure of the thiolate-protected Au38 nanocluster . J. Am. Chem. Soc. , 132 : 8210 – 8218 .
  • Lopez-Acevedo , O. , Akola , J. , Whetten , R.L. , Grönbeck , H. and Häkkinen , H. 2009 . Structure and bonding in the ubiquitous lcosahedral metallic gold cluster Au144(SR)60 . J. Phys. Chem. C , 113 : 5035 – 5038 .
  • Jiang , D.-E. , Walter , M. and Akola , J. 2010 . On the structure of a thiolated gold cluster: Au44(SR)28 2 −  . J. Phys. Chem. C , 114 : 15883 – 15889 .
  • Schaaff , T.G. and Whetten , R.L. 2000 . Giant gold-glutathione cluster compounds: Intense optical activity in metal-based transitions . Phys. Chem. B , 104 : 2630 – 2641 .
  • Schmid , G. , Pfeil , R. , Boese , R. , Bandermann , F. , Meyer , S. , Calis , G.H.M. and van der Velden , J.W.A. 1981 . Au55[P(C6H5)3]12CI6—ein goldcluster ungewöhnlicher gröβe . Chemische Berichte , 114 : 3634 – 3643 .
  • Schmid , G. 2008 . The relevance of shape and size of Au55 clusters . Chem. Soc. Rev. , 37 : 1909 – 1930 .
  • Walter , M. , Moseler , M. , Whetten , R.L. and Häkkinen , H. 2011 . A 58-electron superatom-complex model for the magic phosphine-protected gold clusters (Schmid-gold, Nanogold®) of 1.4-nm dimension . Chem. Sci. , 2 : 1583 – 1587 .
  • Burgess , R.W. and Keast , V.J. 2011 . TDDFT study of the optical absorption spectra of bare and coated Au55 and Au69 clusters . J. Phys. Chem. C , 115 : 21016 – 21021 .
  • Ivanov , S.A. , Arachchige , I. and Aikens , C.M. 2011 . Density functional analysis of geometries and electronic structures of gold-phosphine clusters: The case of Au4(PR3)4 2+ and Au4(μ2-I)2(PR3)4. . J. Phys. Chem. A , 115 : 8017 – 8031 .
  • Schaaff , T.G. , Knight , G. , Shafigullin , M.N. , Borkman , R.F. and Whetten , R.L. 1998 . Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound . J. Phys. Chem. B , 102 : 10643 – 10646 .
  • Goldsmith , M.-R. , George , C.B. , Zuber , G. , Naaman , R. , Waldeck , D.H. , Wipf , P. and Beratan , D.N. 2006 . The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates . Phys. Chem. Chem. Phys. , 8 : 63 – 67 .
  • Garzón , I.L. , Reyes-Nava , J.A. , Rodríguez-Hernández , J.I. , Sigal , I. , Beltrán , M.R. and Michaelian , K. 2002 . Chirality in bare and passivated gold nanoclusters . Phys. Rev. B , 66 : 073403
  • Provorse , M.R. and Aikens , C.M. 2010 . Origin of intense chiroptical effects in undecagold subnanometer particles . J. Am. Chem. Soc. , 132 : 1302 – 1310 .
  • Sánchez-Castillo , A. , Noguez , C. and Garzón , I.L. 2010 . On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters . J. Am. Chem. Soc. , 132 : 1504 – 1505 .
  • Aikens , C.M. 2008 . Origin of discrete optical absorption spectra of M25(SH)18−  nanoparticles (M = Au, Ag) . J. Phys. Chem. C , 112 : 19797 – 19800 .
  • Aikens , C.M. 2009 . Effects of core distances, solvent, and level of theory on the TDDFT optical absorption spectrum of the thiolate-protected Au25 nanoparticle . J. Phys. Chem. A , 113 : 10811 – 10817 .
  • Hulkko , E. , Lopez-Acevedo , O. , Koivisto , J. , Levi-Kalisman , Y. , Kornberg , R.D. , Pettersson , M. and Häkkinen , H. 2011 . Electronic and vibrational signatures of the Au102(p-MBA)44 Cluster . J. Am. Chem. Soc. , 133 : 3752 – 3755 .
  • Guidez , E.B. and Aikens , C.M. 2012 . Development of a charge-perturbed particle-in-a-sphere model for nanoparticle electron structure . Phys. Chem. Chem. Phys. , 14 : 4287 – 4295 .
  • Bau , R. 1998 . Crystal structure of the antiarthritic drug gold thiomalate (myochrysine): A double-helical geometry in the solid state . J. Am. Chem. Soc. , 120 : 9380 – 9381 .
  • Shaw , C.F. III . 1999 . Gold-based therapeutic agents . Chem. Rev. , 99 : 2589 – 2600 .
  • Kim , K. , Lee , Y.M. , Lee , H.B. and Shin , K.S. 2009 . Silver salts of aromatic thiols applicable as core materials of molecular sensors operating via SERS and fluorescence . Biosens. Bioelectron. , 24 : 3615 – 3621 .
  • LeBlanc , D.J. and Lock , C.J.L. 1997 . cyclo-Hexakis[(2,4,6-triisopropylthio-phenolato-S:S)gold(I)] diethyl ether solvate . Acta Cryst. C , 53 : 1765 – 1768 .
  • Wiseman , M.R. , Marsh , P.A. , Bishop , P.T. , Brisdon , B.J. and Mahon , M.F. 2000 . Homoleptic gold thiolate catenanes . J. Am. Chem. Soc. , 122 : 12598 – 12599 .
  • Simpson , C.A. , Farrow , C.L. , Tian , P. , Billinge , S.J.L. , Huffman , B.J. , Harkenss , K.M. and Cliffel , D.E. 2010 . Tiopronin gold nanoparticle precursor forms aurophilic ring tetramer . Inorg. Chem. , 49 : 10858 – 10866 .
  • Ahmed , L.S. , Dilworth , J.R. , Miller , J.R. and Wheatley , N. 1998 . Silver(I)-silver(I) interactions in the tetrameric silver thiolate phosphine complex [Ag4(SPh)4(PPh3)4] . Inorg. Chim. Acta , 278 : 229 – 131 .
  • Dance , I.G. 1977 . On the molecularity of crystalline cyclohexanethiolatosilver(I) . Inorg. Chim. Acta , 25 : L17 – L18 .
  • Dance , I.G. , Fitzpatrick , L.J. , Rae , A.D. and Scudder , M.L. 1983 . The intertwined double-(-Ag-SR-)-strand chain structure of crystalline (3-methylpentane-3-thiolato)silver, in relation to (AgSR)8 molecules in solution . Inorg. Chem. , 22 : 3785 – 3788 .
  • Dance , I.G. , Fitzpatrick , L.J. , Craig , D.C. and Scudder , M.L. 1989 . Monocyclic copper and silver tertiary alkanethiolates: Formation and molecular structures of (CuSBu-tert)4(Ph3P)2, (AgSCMeEt2)8(Ph3P)2 and (AgSBu-tert)14(Ph3P)4 and structural principles . Inorg. Chem. , 28 : 1853 – 1861 .
  • Dance , I.G. , Fisher , K.J. , Banda , R.M.H. and Scudder , M.L. 1991 . Layered structure of crystalline compounds AgSR . Inorg. Chem. , 30 : 183 – 187 .
  • Howell , J.A.S. 2006 . Structure and bonding in cyclic thiolate complexes of copper, silver, and gold . Polyhedron , 25 : 2993 – 3005 .
  • Grönbeck , H. , Walter , M. and Häkkinen , H. 2006 . Theoretical characterization of cyclic thiolated gold clusters . J. Am. Chem. Soc. , 128 : 10268 – 10275 .
  • Shao , N. , Pei , Y. , Gao , Y. and Zeng , X.C. 2009 . Onset of double helical structure in small-sized homoleptic gold thiolate clusters . J. Phys. Chem. A , 113 : 629 – 632 .
  • Kacprzak , K.A. , Lopez-Acevedo , O. , Häkkinen , H. and Grönbeck , H. 2010 . Theoretical characterization of cyclic thiolated copper, silver, and gold clusters . J. Phys. Chem. C , 114 : 13571 – 13576 .
  • Barngrover , B.M. and Aikens , C.M. 2011 . Incremental binding energies of gold(I) and silver(I) thiolate clusters . J. Phys. Chem. A , 115 : 11818 – 11823 .
  • Guidez , E.B. , Hadley , A. and Aikens , C.M. 2011 . Initial growth mechanisms of gold-phosphine clusters . J. Phys. Chem. C , 115 : 6305 – 6316 .
  • Häkkinen , H. and Landman , U. 2000 . Gold clusters (AuN, 2⩽N⩽10) and their anions . Phys. Rev. B , 62 : R2287
  • Alvarez , M.M. , Khoury , J.T. , Schaaff , T.G. , Shafifullin , M. , Vezmar , I. and Whetten , R.L. 1997 . Critical sizes in the growth of Au clusters . Chem. Phys. Lett. , 266 : 91 – 98 .
  • Barngrover , B.M. and Aikens , C.M. 2011 . Electron and hydride addition to gold(I) thiolate oligomers: Implications for gold-thiolate nanoparticle growth mechanisms . J. Phys. Chem. Lett. , 2 : 994
  • Pei , Y. , Pal , R. , Liu , C. , Gao , Y. , Zhang , Z. and Zeng , X.C. Interlocked catenane-like structure predicted in Au24(SR)20: Implication to structural evolution of thiolated gold clusters from homoleptic gold(I) thiolates to core-stacked nanoparticles . J. Am. Chem. Soc. , 134 ( 2012 ) 3015 – 3024 .
  • Woehrle , G.H. , Warner , M.G. and Hutchison , J.E. 2002 . Ligand exchange reactions yield subnanometer, thiol-stabilized gold particles with defined optical transitions . J. Phys. Chem. B , 106 : 9979 – 9981 .
  • Woehrle , G.H. , Brown , L.O. and Hutchison , J.E. 2005 . Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: Scope and mechanism of ligand exchange . J. Am. Chem. Soc. , 127 : 2172 – 2183 .
  • Balasubramanian , R. , Guo , R. , Mills , A.J. and Murray , R.W. 2005 . Reaction of Au55(PPh3)12Cl6 with thiols yields thiolate monolayer protected Au75 clusters . J. Am. Chem. Soc. , 127 : 8126 – 8132 .
  • Shichibu , Y. , Negishi , Y. , Tsukuda , T. and Teranishi , T. 2005 . Large-scale synthesis of thiolated Au25 clusters via ligand exchange reactions of phosphine-stabilized Au11 clusters . J. Am. Chem. Soc. , 127 : 13464 – 13465 .
  • Wang , W. and Murray , R.W. 2005 . Reaction of triphenylphosphine with phenylethanethiolate-protected Au38 nanoparticles . Langmuir , 21 : 7015 – 7022 .
  • Hostetler , M.J. , Templeton , A.C. and Murray , R.W. 1999 . Dynamics of place-exchange reaction on monolayer-protected gold cluster molecules . Langmuir , 15 : 3782 – 3789 .
  • Song , Y. and Murray , R.W. 2002 . Dynamics and extent of ligand exchange depend on electronic charge of metal nanoparticles . J. Am. Chem. Soc. , 124 : 7096 – 7102 .
  • Guo , R. , Song , Y. , Wang , G. and Murray , R.W. 2005 . Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? . J. Am. Chem. Soc. , 127 : 2752 – 2757 .
  • Hadley , A. and Aikens , C.M. 2010 . Thiolate ligand exchange mechanisms of Au1 and subnanometer gold particle Au11 . J. Phys. Chem. C , 114 : 18134 – 18138 .
  • Guo , R. and Murray , R.W. 2005 . Substituent effects on redox potentials and optical gap energies of molecule-like Au38(SPhX)24 nanoparticles . J. Am. Chem. Soc. , 127 : 12140 – 12143 .
  • Aikens , C.M. 2010 . Geometric and electronic structure of Au25(SPhX)18- (X = H, F, Cl, Br, CH3, and OCH3) . J. Phys. Chem. Lett. , 1 : 2594 – 2599 .
  • Parker , J.F. , Kacprzak , K.A. , Lopez-Acevedo , O. , Häkkinen , H. and Murray , R.W. 2010 . Experimental and density functional theory analysis of serial introductions of electron-withdrawing ligands into the ligand shell of a thiolate-protected Au25 nanoparticle . J. Phys. Chem. C , 114 : 8276 – 8281 .
  • Jensen , L. , Aikens , C.M. and Schatz , G.C. 2008 . Electronic structure methods for studying surface-enhanced Raman scattering . Chem. Soc. Rev. , 37 : 1061 – 1073 .
  • Zhao , L. , Jensen , L. and Schatz , G.C. 2006 . Pyridine-Ag20 cluster: A model system for studying surface-enhanced Raman scattering . J. Am. Chem. Soc. , 128 : 2911 – 2919 .
  • Jensen , L. , Zhao , L.L. and Schatz , G.C. 2007 . Size-Dependence of the enhanced Raman scattering of pyridine adsorbed on Agn (n = 2-8, 20) clusters . J. Phys. Chem. C , 111 : 4756 – 4764 .
  • Aikens , C.M. and Schatz , G.C. 2006 . TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20 . J. Phys. Chem. A , 110 : 13317 – 13324 .
  • Zhao , L.L. , Jensen , L. and Schatz , G.C. 2006 . Surface-enhanced Raman scattering of pyrazine at the junction between two Ag20 nanoclusters . Nano Lett. , 6 : 1229 – 1234 .
  • Zhao , J. , Jensen , L. , Sung , J. , Zou , S. , Schatz , G.C. and Van Duyne , R.P. 2007 . Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles . J. Am. Chem. Soc. , 129 : 7647 – 7656 .
  • Brewer , K.E. and Aikens , C.M. 2010 . TDDFT investigation of surface-enhanced Raman scattering of HCN and CN- on Ag20 . J. Phys. Chem. A , 114 : 8858 – 8863 .
  • Kellogg , D.S. and Pemberton , J.E. 1987 . Effects of solution conditions on the surface-enhanced Raman scattering of cyanide species at Ag electrodes . J. Phys. Chem. , 91 : 1120 – 1126 .
  • Kellogg , D.S. and Pemberton , J.E. 1987 . Surface-enhanced Raman scattering of HCN at Pb-modified Ag surfaces . J. Phys. Chem. , 91 : 1126 – 1130 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.