530
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Water in metal-organic frameworks: structure and diffusion of H2O in MIL-53(Cr) from quantum simulations

Pages 631-641 | Received 18 Dec 2011, Accepted 21 Mar 2012, Published online: 04 Jul 2012

References

  • Yaghi , O.M. , O'Keeffe , M. , Ockwig , N.W. , Chae , H.K. , Eddaoudi , M. and Kim , J. 2003 . Reticular synthesis and the design of new materials . Nature , 423 : 705 – 714 .
  • Dybtsev , D.N. , Chun , H. and Kim , K. 2004 . Rigid and flexible: A highly porous metal-organic framework with unusual guest-dependent dynamic behavior . Angew. Chem. Int. Ed. , 43 : 5033 – 5036 .
  • Serre , C. , Millange , F , Thouvenot , C , Nogues , M. , Marsolier , G. , Louer , D. and Ferey , G. 2002 . Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr-III(OH)({O2C-C6H4-CO2}({HO2C-C6H4-CO2H}(x)·H2Oy . J. Am. Chem. Soc. , 124 : 13519 – 13526 .
  • Loiseau , T. 2004 . A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration . Chem. Eur. J. , 10 : 1373 – 1382 .
  • Ramsahye , N.A. 2007 . On the breathing effect of a metal-organic framework upon CO2 adsorption: Monte Carlo compared to microcalorimetry experiments . Chem. Commun. , : 3261 – 3263 .
  • Horcajada , P. 2008 . Flexible porous metal-organic frameworks for a controlled drug delivery . J. Am. Chem. Soc. , 130 : 6774 – 6780 .
  • Llewellyn , P.L. , Maurin , G. , Devic , T. , Loera-Serna , S. , Rosenbach , N. , Serre , C. , Bourrelly , S. , Horcajada , P. , Filinchuk , Y. and Ferey , G. 2008 . Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation . J. Am. Chem. Soc. , 130 : 12808 – 12814 .
  • Shimomura , S. 2007 . Guest-specific function of a flexible undulating channel in a 7,7,8,8-tetracyano-p-quinodimethane dimer-based porous coordination polymer . J. Am. Chem. Soc. , 129 : 10990 – 10991 .
  • Shimomura , S. 2010 . Flexibility of porous coordination polymers strongly linked to selective sorption mechanism . Chem. Mater. , 22 : 4129 – 4131 .
  • Shimomura , S. 2010 . Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer . Nat. Chem. , 2 : 633 – 637 .
  • Horike , S. 2009 . Soft porous crystals . Nat. Chem. , 1 : 695 – 704 .
  • Wang , Z.Q. and Cohen , S.M. 2009 . Modulating metal-organic frameworks to breathe: A postsynthetic covalent modification approach . J. Am. Chem. Soc. , 131 : 16675 – 16677 .
  • Devic , T. 2010 . Functionalization in flexible porous solids: Effects on the pore opening and the host-guest interactions . J. Am. Chem. Soc. , 132 : 1127 – 1136 .
  • Ferey , G. 2008 . Hybrid porous solids: Past, present, future, Chem . Soc. Rev. , 37 : 191 – 214 .
  • Long , J.R. and Yaghi , O.M. 2009 . The pervasive chemistry of metal-organic frameworks . Chem. Soc. Rev. , 38 : 1213 – 1214 .
  • Ferey , G. 2011 . Why hybrid porous solids capture greenhouse gases? . Chem. Soc. Rev. , 40 : 550 – 562 .
  • Greathouse , J.A. and Allendorf , M.D. 2006 . The interaction of water with MOF-5 simulated by molecular dynamics . J. Am. Chem. Soc. , 128 : 10678 – 10679 .
  • Park , K.S. 2006 . Exceptional chemical and thermal stability of zeolitic imidazolate frameworks . Proc. Natl. Acad. Sci. USA , 103 : 10186 – 10191 .
  • Demessence , A. 2009 . Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine . J. Am. Chem. Soc. , 131 : 8784 – 8786 .
  • Li , Y. and Yang , R.T. 2007 . Gas adsorption and storage in metal-organic framework MOF-177 . Langmuir , 23 : 12937 – 12944 .
  • Kondo , A. 2007 . Adsorption of water on three-dimensional pillared-layer metal organic frameworks . J. Colloid Interface Sci. , 314 : 422 – 426 .
  • Kusgens , P. 2009 . Characterization of metal-organic frameworks by water adsorption . Microporous Mesoporous Mater. , 120 : 325 – 330 .
  • Low , J.J. 2009 . Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration . J. Am. Chem. Soc. , 131 : 15834
  • Han , S.S. 2010 . Molecular dynamics simulations of stability of metal-organic frameworks against H2O using the ReaxFF reactive force field . Chem. Commun. (Camb.) , 46 : 5713 – 5715 .
  • Chen , Z.X. 2009 . Reversible two-dimensional-three dimensional framework transformation within a prototype metal-organic framework . Cryst. Growth Des. , 9 : 5293 – 5296 .
  • Millward , A.R. and Yaghi , O.M. 2005 . Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature . J. Am. Chem. Soc. , 127 : 17998 – 17999 .
  • Yazaydin , A.O. 2009 . Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules . Chem. Mater. , 21 : 1425 – 1430 .
  • Ricci , M.A. 2000 . Water in confined geometries: Experiments and simulations . J. Phys. Condens. Matter , 12 : A345 – A350 .
  • Rasaiah , J.C. 2008 . Water in nonpolar confinement: From nanotubes to proteins and beyond . Annu. Rev. Phys. Chem. , 59 : 713 – 740 .
  • Christenson , H.K. 2001 . Confinement effects on freezing and melting . J. Phys. Condens. Matter , 13 : R95 – R133 .
  • Paesani , F. and Voth , G.A. 2009 . The properties of water: Insights from quantum simulations . J. Phys. Chem. B , 113 : 5702 – 5719 .
  • Hernández de la Peña , L. and Kusalik , P.G. 2005 . Temperature dependence of quantum effects in liquid water . J. Am. Chem. Soc. , 127 : 5246 – 5251 .
  • Millange , F. 2002 . Synthesis, structure determination and properties of MIL-53as and MIL-53ht: The first Cr-III hybrid inorganic-organic microporous solids: Cr-III(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x . Chem. Commun. , : 822 – 823 .
  • Bourrelly , S. 2005 . Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 . J. Am. Chem. Soc. , 127 : 13519 – 13521 .
  • Coombes , D.S. 2008 . Sorption-induced breathing in the flexible metal organic framework CrMIL-53: Force-field simulations and electronic structure analysis . J. Chem. Phys. C , 113 : 544 – 552 .
  • Salles , F. 2008 . Molecular dynamics simulations of breathing MOFs: Structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption . Angew. Chem. Int. Ed. , 47 : 8487 – 8491 .
  • Salles , F. 2011 . Molecular insight into the adsorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF . J. Phys. Chem. C , 115 : 10764 – 10776 .
  • Salles , F. 2009 . Transport diffusivity of CO2 in the highly flexible metal-organic framework MIL-53(Cr) . Angew. Chem. Int. Ed. , 48 : 8335 – 8339 .
  • Hamon , L. 2011 . Molecular insight into the adsorption of H2S in the flexible MIL-53(Cr) and rigid MIL-47(V) MOFs: Infrared spectroscopy combined to molecular simulations . J. Phys. Chem. C , 115 : 2047 – 2056 .
  • Parrinello , M. and Rahman , A. 1984 . study of An F-Center in molten KCl . J. Chem. Phys. , 80 : 860 – 867 .
  • Voth , G.A. 1996 . Path integral centroid methods in quantum statistical mechanics and dynamics . Adv. Chem. Phys. , 93 : 135 – 218 .
  • Feynman , R.P. and Hibbs , A.R. 1965 . Quantum Mechanics and Path Integrals , New York : McGraw-Hill .
  • Feynman , R.P. 1972 . Statistical Mechanics , New York : Benjamin .
  • Cao , J. and Voth , G.A. 1994 . The formulation of quantum-statistical mechanics based on the Feynman path centroid density. 1. Equilibrium properties . J. Chem. Phys. , 100 : 5093 – 5105 .
  • Cao , J. and Voth , G.A. 1994 . The formulation of quantum-statistical mechanics based on the Feynman path centroid density. 2. Dynamical properties . J. Chem. Phys. , 100 : 5106 – 5117 .
  • Cao , J. and Voth , G.A. 1994 . The formulation of quantum-statistical mechanics based on the Feynman path centroid density. 3. Phase-space formalism and analysis of centroid molecular-dynamics . J. Chem. Phys. , 101 : 6157 – 6167 .
  • Cao , J. and Voth , G.A. 1994 . The formulation of quantum-statistical mechanics based on the Feynman path centroid density. 4. Algorithms for centroid molecular-dynamics . J. Chem. Phys. , 101 : 6168 – 6183 .
  • Cao , J. and Voth , G.A. 1994 . The formulation of quantum-statistical mechanics based on the Feynman path centroid density. 5. Quantum instantaneous normal-mode theory of liquids . J. Chem. Phys. , 101 : 6184 – 6192 .
  • Jang , S. and Voth , G.A. 1999 . Path integral centroid variables and the formulation of their exact real time dynamics . J. Chem. Phys. , 111 : 2357 – 2370 .
  • Jang , S. and Voth , G.A. 1999 . A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables . J. Chem. Phys. , 111 : 2371 – 2370 .
  • Frenkel , D. and Smit , B. 2001 . Understanding Molecular Simulation: From Algorithms to Applications , San Diego : Academic Press .
  • Tuckerman , M.E. 2010 . Statistical Mechanics: Theory and Molecular Simulation , Oxford : Oxford University Press .
  • Paesani , F. 2006 . An accurate and simple quantum model for liquid water . J. Chem. Phys. , 125 : 184507
  • Martyna , G.J. 1992 . Nosé-Hoover chains – The canonical ensemble via continuous dynamics . J. Chem. Phys. , 97 : 2635 – 2643 .
  • Allen , M.P. and Tildesley , D.J. 1987 . Computer Simulations of Liquids , Oxford : Clarendon .
  • P. Howland, J.C. Sung, and F. Paesani, Polarization effects in the adsorption of water in MIL-53(Cr), submitted (2012)
  • Kuharski , R.A. and Rossky , P.J. 1985 . A quantum-mechanical study of structure in liquid H2O and D2O . J. Chem. Phys. , 82 : 5164
  • Wallqvist , A. and Berne , B.J. 1985 . Path-integral simulation of pure water . Chem. Phys. Lett. , 117 : 214 – 219 .
  • Bakker , H.J. and Skinner , J.L. 2010 . Vibrational spectroscopy as a probe of structure and dynamics in liquid water . Chem. Rev. , 110 : 1498 – 1517 .
  • Paesani , F. 2010 . Nuclear quantum effects in the reorientation of water . J. Phys. Chem. Lett. , 1 : 2316 – 2321 .
  • Markland , T.E. 2011 . Quantum fluctuations can promote or inhibit glass formation . Nat. Phys. , 7 : 134 – 137 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.