143
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Inherent structure analysis of defect thermodynamics and melting in silicon

, &
Pages 659-670 | Received 15 Feb 2012, Accepted 28 Apr 2012, Published online: 04 Jul 2012

References

  • Weinberg , K. and Bohme , T. 2009 . Condensation and growth of Kirkendall voids in intermetallic compounds . IEEE Trans. Compon. Packag. Technol. , 32 : 684 – 692 .
  • Nielsen , K.L. and Tvergaard , V. 2011 . Failure by void coalescence in metallic materials containing primary and secondary voids subject to intense shearing . Int. J. Solids Struct. , 48 : 1255 – 1267 .
  • Itsumi , M. , Akiya , H. , Ueki , T. , Tomita , M. and Yamawaki , M. 1996 . Octahedral-structured gigantic precipitates as the origin of gate-oxide defects in metal-oxide-semiconductor large-scale-integrated circuits . Jpn. J. Appl. Phys. Part 1 Regular Pap. Short Notes Rev. Pap. , 35 : 812 – 817 .
  • Sinno , T. , Dornberger , E. , von Ammon , W. , Brown , R.A. and Dupret , F. 2000 . Defect engineering of Czochralski single-crystal silicon . Mater. Sci. Eng. Rep. , 28 : 149 – 198 .
  • Sinno , T. 2007 . A bottom-up multiscale view of point-defect aggregation in silicon . J. Cryst. Growth , 303 : 5 – 11 .
  • Hens , S. , Vanhellemont , J. , Poelman , D. , Clauws , P. , Romandic , I. , Theuwis , A. , Holsteyns , F. and Van Steenbergen , J. 2005 . Experimental and theoretical evidence for vacancy-clustering-induced large voids in Czochralski-grown germanium crystals . Appl. Phys. Lett. , 87 : 1 – 2 . 061915
  • Claverie , A. , Giles , L.F. , Omri , M. , de Mauduit , B. , Ben Assayag , G. and Mathiot , D. 1999 . Nucleation, growth and dissolution of extended defects in implanted Si: impact on dopant diffusion . Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms , 147 : 1 – 12 .
  • Jones , R. , Eberlein , T.A.G. , Pinho , N. , Coomer , B.J. , Goss , J.P. , Briddon , P.R. and Oberg , S. 2002 . Self-interstitial clusters in silicon . Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms , 186 : 10 – 18 .
  • Borghesi , A. , Pivac , B. , Sassella , A. and Stella , A. 1995 . Oxygen precipitation in silicon . J. Appl. Phys. , 77 : 4169 – 4244 .
  • Pelaz , L. , Gilmer , G.H. , Gossmann , H.J. , Rafferty , C.S. , Jaraiz , M. and Barbolla , J. 1999 . B cluster formation and dissolution in Si: A scenario based on atomistic modeling . Appl. Phys. Lett. , 74 : 3657 – 3659 .
  • Kapur , S.S. , Prasad , M. and Sinno , T. 2004 . Carbon-mediated aggregation of self-interstitials in silicon: A large-scale molecular dynamics study . Phys. Rev. B , 69 : 1 – 8 . 155214
  • Kapur , S.S. , Prasad , M. , Crocker , J.C. and Sinno , T. 2005 . Role of configurational entropy in the thermodynamics of clusters of point defects in crystalline solids . Phys. Rev. B , 72 : 1 – 12 . 014119
  • Stillinger , F.H. and Weber , T.A. 1982 . Hidden structure in liquids . Phys. Rev. A , 25 : 978 – 989 .
  • Stillinger , F.H. and Weber , T.A. 1984 . Point-defects in Bcc crystals – structures, transition kinetics, and melting implications . J. Chem. Phys. , 81 : 5103
  • Bogdan , T.V. , Wales , D.J. and Calvo , F. 2006 . Equilibrium thermodynamics from basin-sampling . J. Chem. Phys. , 124 : 1 – 13 . 044102
  • Doye , J.P.K. , Wales , D.J. and Miller , M.A. 1998 . Thermodynamics and the global optimization of Lennard-Jones clusters . J. Chem. Phys. , 109 : 8143 – 8153 .
  • Prentiss , M.C. , Wales , D.J. and Wolynes , P.G. 2010 . The energy landscape, folding pathways and the kinetics of a knotted protein . PLos Comput. Biol. , 6 : 1 – 12 . e1000835
  • Sciortino , F. , Kob , W. and Tartaglia , P. 1999 . Inherent structure entropy of supercooled liquids . Phys. Rev. Lett. , 83 : 3214 – 3217 .
  • Debenedetti , P.G. and Stillinger , F.H. 2001 . Supercooled liquids and the glass transition . Nature , 410 : 259 – 267 .
  • Buchner , S. and Heuer , A. 1999 . Potential energy landscape of a model glass former: Thermodynamics, anharmonicities, and finite size effects . Phys. Rev. E , 60 : 6507 – 6518 .
  • Calvo , F. , Doye , J.P.K. and Wales , D.J. 2002 . Collapse of Lennard-Jones homopolymers: Size effects and energy landscapes . J. Chem. Phys. , 116 : 2642 – 2649 .
  • Nakagawa , N. and Peyrard , M. 2006 . The inherent structure landscape of a protein . Proc. Natl Acad. Sci. USA , 103 : 5279 – 5284 .
  • Bazant , M.Z. , Kaxiras , E. and Justo , J.F. 1997 . Environment-dependent interatomic potential for bulk silicon . Phys. Rev. B , 56 : 8542 – 8552 .
  • Mendelev , M.I. , Kramer , M.J. , Becker , C.A. and Asta , M. 2008 . Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu . Philos. Mag. , 88 : 1723 – 1750 .
  • Prasad , M. and Sinno , T. 2002 . Atomistic-to-continuum description of vacancy cluster properties in crystalline silicon . Appl. Phys. Lett. , 80 : 1951 – 1953 .
  • Frewen , T.A. , Kapur , S.S. , Haeckl , W. , von Ammon , W. and Sinno , T. 2005 . A microscopically accurate continuum model for void formation during semiconductor silicon processing . J. Cryst. Growth , 279 : 258 – 271 .
  • Dai , J.G. , Kanter , J.M. , Kapur , S.S. , Seider , W.D. and Sinno , T. 2005 . On-lattice kinetic Monte Carlo simulations of point defect aggregation in entropically influenced crystalline systems . Phys. Rev. B , 72 : 1 – 10 . 134102
  • Dai , J. , Seider , W.D. and Sinno , T. 2007 . A lattice kinetic Monte Carlo study of void morphological evolution during silicon crystal growth . Mol. Simul. , 33 : 733 – 745 .
  • Ghasemi , S.A. , Amsler , M. , Hennig , R.G. , Roy , S. , Goedecker , S. , Lenosky , T.J. , Umrigar , C.J. , Genovese , L. , Morishita , T. and Nishio , K. 2010 . Energy landscape of silicon systems and its description by force fields, tight binding schemes, density functional methods, and quantum Monte Carlo methods . Phys. Rev. B , 81 : 1 – 12 .
  • Mishin , Y. , Sorensen , M.R. and Voter , A.F. 2001 . Calculation of point-defect entropy in metals . Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Properties , 81 : 2591 – 2612 .
  • Mauro , J.C. , Loucks , R.J. , Balakrishnan , J. and Raghavan , S. 2007 . Monte Carlo method for computing density of states and quench probability of potential energy and enthalpy landscapes . J. Chem. Phys. , 126 : 1 – 12 . 194103
  • Potuzak , M. , Mauro , J.C. , Kiczenski , T.J. , Ellison , A.J. and Allan , D.C. 2010 . Resolving the vibrational and configurational contributions to thermal expansion in isobaric glass-forming systems . J. Chem. Phys. , 133 : 1 – 4 .
  • Plimpton , S.J. 1995 . Fast parallel algorithms for short-range molecular dynamics . J Comput. Phys. , 117 : 1 – 19 .
  • Goedecker , S. 2004 . An efficient search method for the global minimum of the potential energy surface of complex molecular systems . J. Chem. Phys. , 120 : 9911 – 9917 .
  • Lee , S. and Hwang , G.S. 2008 . Structure and stability of small compact self-interstitial clusters in crystalline silicon . Phys. Rev. B , 77 : 1 – 6 . 085210
  • Humble , P. 1982 . The structure and mechanism of formation of platelets in natural type Ia diamond . Proc. Roy. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , 381 : 65 – 81 .
  • Arai , N. , Takeda , S. and Kohyama , M. 1997 . Self-interstitial clustering in crystalline silicon . Phys. Rev. Lett. , 78 : 4265 – 4268 .
  • Coomer , B.J. , Goss , J.P. , Jones , R. , Oberg , S. and Briddon , P.R. 2001 . Identification of the tetra-interstitial in silicon . J. Phys. Condens. Matter , 13 : L1 – L7 .
  • Kapur , S.S. and Sinno , T. 2008 . Entropic origins of stability in silicon interstitial clusters . Appl. Phys. Lett. , 93 : 1 – 3 . 221911
  • Kapur , S.S. , Nieves , A.M. and Sinno , T. 2010 . Detailed microscopic analysis of self-interstitial aggregation in silicon. II. Thermodynamic analysis of single clusters . Phys. Rev. B , 82 : 1 – 11 . 045206
  • Bichara , C. , Gaspard , J.P. and Mathieu , J.C. 1988 . Configurational density of states and entropy of alloys – a Monte-Carlo approach on body-centered cubic and face-centered cubic lattices . J. Chem. Phys. , 89 : 4339 – 4345 .
  • Hoover , W.G. , Holian , B.L. and Hindmars , A.C. 1972 . Number dependence of small-crystal thermodynamic properties . J. Chem. Phys. , 57 : 1980 – 1985 .
  • Cahn , R.W. 1986 . Melting and the surface . Nature , 323 : 668 – 669 .
  • Dash , J.G. 1999 . History of the search for continuous melting . Rev. Mod. Phys. , 71 : 1737 – 1743 .
  • Hsieh , T.E. and Balluffi , R.W. 1989 . Experimental-study of grain-boundary melting in aluminum . Acta Metall. , 37 : 1637 – 1644 .
  • Zhong , J. , Zhang , L.H. , Jin , Z.H. , Sui , M.L. and Lu , K. 2001 . Superheating of Ag nanoparticles embedded in Ni matrix . Acta Mater. , 49 : 2897 – 2904 .
  • Mei , Q.S. , Wang , S.C. , Cong , H.T. , Jin , Z.H. and Lu , K. 2005 . Pressure-induced superheating of Al nanoparticles encapsulated in Al2O3 shells without epitaxial interface . Acta Mater. , 53 : 1059 – 1066 .
  • Siwick , B.J. , Dwyer , J.R. , Jordan , R.E. and Miller , R.J.D. 2003 . An atomic-level view of melting using femtosecond electron diffraction . Science , 302 : 1382 – 1385 .
  • Williamson , S. , Mourou , G. and Li , J.C.M. 1984 . Time-resolved laser-induced phase-transformation in aluminum . Phys. Rev. Lett. , 52 : 2364 – 2367 .
  • Nieves , A.M. and Sinno , T. 2011 . An enthalpy landscape view of homogeneous melting in crystals . J. Chem. Phys. , 135 : 1 – 12 . 074504
  • Mei , Q.S. and Lu , K. 2007 . Melting and superheating of crystalline solids: From bulk to nanocrystals . Prog. Mater. Sci. , 52 : 1175 – 1262 .
  • Keblinski , P. , Bazant , M.Z. , Dash , R.K. and Treacy , M.M. 2002 . Thermodynamic behavior of a model covalent material described by the environment-dependent interatomic potential . Phys. Rev. B , 66 : 1 – 14 . 064104
  • Yang , W.S. , Jona , F. and Marcus , P.M. 1982 . The 2 × 1 structural reconstruction of Si(001) . Solid State Commun. , 43 : 847 – 851 .

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.