1,148
Views
117
CrossRef citations to date
0
Altmetric
Original Articles

DL_MESO: highly scalable mesoscale simulations

, , &
Pages 796-821 | Received 19 Oct 2012, Accepted 28 Jan 2013, Published online: 27 Mar 2013

REFERENCES

  • GingoldRA, MonaghanJJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977; 181:375–389.
  • LucyLB. A numerical approach to the testing of the fission hypothesis. Astron J. 1977; 82:1013–1024.
  • HoogerbruggePJ, KoelmanJMVA. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett. 1992; 19:155–160.
  • SchlijperAG, HoogerbruggePJ, MankeCW. Computer simulation of dilute polymer solutions with the dissipative particle dynamics method. J Rheol. 1995; 39:567–579.
  • GrootRD, WarrenPB. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J Chem Phys. 1997; 107:4423–4435.
  • WarrenPB. Vapour–liquid equilibrium with many-body dissipative particle dynamics. Phys Rev E. 2003; 68:066702.
  • EspañolP. Dissipative particle dynamics with energy conservation. Europhys Lett. 1997; 40:631–636.
  • EspañolP, WarrenP. Statistical mechanics of dissipative particle dynamics. Europhys Lett. 1995; 30:191–196.
  • RosenheadL. The formation of vortices from a surface of discontinuity. Proc R Soc Lond A. 1931; 134:170–192.
  • LeonardA. Vortex methods for flow simulation. J Comput Phys. 1980; 37:289–335.
  • CottetG-H, KoumoutsakosP. Vortex methods: theory and applications. Cambridge: Cambridge University Press; 2000.
  • EspañolP. Fluid particle model. Phys Rev E. 1998; 57:2930–2948.
  • FrischU, HasslacherB, PomeauY. Lattice-gas automata for the Navier–Stokes equation. Phys Rev Lett. 1996; 56:1505–1508.
  • McNamaraGR, ZanettiG. Use of the Boltzmann equation to simulate lattice gas automata. Phys Rev Lett. 1988; 61:2332–2335.
  • EvansR, In: HendersonD, editor. Fundamentals of inhomogeneous fluids, Chapter 3,New York: Marcel Dekker; 1992.
  • FraaijeJGEM. Dynamic density functional theory for microphase separation kinetics of block copolymer melts. J Chem Phys. 1993; 99:9202–9212.
  • FraaijeJGEM, van VlimmerenBAC, MauritsNM, PostmaM, EversOA, HoffmannC, AltevogtP, Goldbeck-WoodG. The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts. J Chem Phys. 1997; 106:4260–4269.
  • SucciS. The lattice Boltzmann equation for fluid dynamics and beyond. Oxford: Clarendon Press; 2001.
  • ChenS, DoolenGD. Lattice Boltzmann method for fluid flows. Ann Rev Fluid Mech. 1998; 30:329–364.
  • ChenS, DoolenGD, EggertKG. Lattice-Boltzmann fluid dynamics: a versatile tool for multiphase and other complicated flows. Los Alamos Sci. 1994; 22:98–111.
  • StilesCD, XueY. Lattice Boltzmann simulation of transport phenomena in nanostructured cathode catalyst layer for proton exchange membrane fuel cells. Mater Res Soc Symp Proc. 2012; 1384:25–30.
  • LuoZ, JiangJ. pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations. J Control Release. 2012; 162:185–193.
  • BoekES, CoveneyPV, LekkerkerkerHNW. Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics. J Phys: Condens Matter. 1996; 8:9509–9512.
  • BoekES, CoveneyPV, LekkerkerkerHNW, van der SchootP. Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys Rev E. 1997; 55:3124–3133.
  • DzwinelW, YuenDA, BoryczkoK. Mesoscopic dynamics of colloids simulated with dissipative particle dynamics and fluid particle model. J Mol Model. 2002; 8:33–43.
  • GrootRD, RaboneKL. Mesoscopic simulation of cell membrane damage, morphology change and rupture by non-ionic surfactants. Biophys J. 2001; 81:725–736.
  • RekvigL, KranenburgM, VreedeJ, HafskjoldB, SmitB. Investigation of surfactant efficiency using dissipative particle dynamics. Langmuir. 2003; 19:8195–8205.
  • HuangKC, LinCM, TsaoHK, ShengYJ. The interactions between surfactants and vesicles: dissipative particle dynamics. J Chem Phys. 2009; 130:245101.
  • ShillcockJC, LipowskyR. Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics. J Chem Phys. 2002; 117:5048–5061.
  • KranenburgM, VenturoliM, SmitB. Phase behaviour and induced interdigitation in bilayers studied with dissipative particle dynamics. J Phys Chem B. 2003; 107:11491–11501.
  • JiangW, HuangJ, WangY, LaradjiM. Hydrodynamic interaction in polymer solution simulated with dissipative particle dynamics. J Chem Phys. 2007; 126:044901.
  • SpenleyNA. Scaling laws for polymers in dissipative particle dynamics. Europhys Lett. 2000; 49:534–540.
  • GaiJG, LinHL, SchrauwenC, HuGH. Dissipative particle dynamics study on the phase morphologies of the ultrahigh molecular weight polyethylene/polypropylene/poly(ethylene glycol) blends. Polymer. 2009; 50:336–346.
  • QianHJ, LuZY, ChenLJ, LiZS, SunCC. Dissipative particle dynamics study on the interfaces in incompatible A/B homopolymer blends and with their block copolymers. J Chem Phys. 2005; 122:184907.
  • LeeWJ, JuSP, WangYC, ChangJG. Modeling of polythene and poly (l-lactide) polymer blends and diblock copolymer: chain length and volume fraction effects on structural arrangement. J Chem Phys. 2007; 127:064902.
  • GrootRD, MaddenTJ. Dynamic simulation of diblock copolymer microphase separation. J Chem Phys. 1998; 108:8713–8724.
  • VattulainenI, KarttunenM, BesoldG, PolsonJM. Integration schemes for dissipative particle dynamics simulations: from softly interacting systems towards hybrid models. J Chem Phys. 2002; 116:3967–3979.
  • ErikssonA, JacobiMN, NyströmJ, TunstrømK. Bottom-up derivation of an effective thermostat for united atoms simulations of water. J Chem Phys. 2009; 130:164509.
  • MarshCA, BackxG, ErnstMH. Static and dynamic properties of dissipative particle dynamics. Phys Rev E. 1997; 56:1676–1691.
  • TrofimovSY, NiesELF, MichelsMAJ. Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J Chem Phys. 2002; 117:9383–9394.
  • PagonabarragaI, FrenkelD. Dissipative particle dynamics for interacting systems. J Chem Phys. 2001; 115:5015–5026.
  • JonesJE. On the determination of molecular fields. II. From the equation of state of a gas. Proc R Soc Lond A. 1924; 106:463–477.
  • WeeksJD, ChandlerD, AndersenHC. Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys. 1971; 54:5237–5247.
  • GhoufiA, MalfreytP. Mesoscale modeling of the water liquid-vapor interface: a surface tension calculation. Phys Rev E. 2011; 83:051601.
  • SoddemannT, DünwegB, KremerK. Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys Rev E. 2003; 68:046702.
  • EwaldPP. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921; 369:253–287.
  • González-MelchorM, MayoralE, VelázquezME, AlejandreJ. Electrostatic interactions in dissipative particle dynamics using the Ewald sums. J Chem Phys. 2006; 125:224107.
  • IbergayC, MalfreytP, TildesleyDJ. Electrostatic interactions in dissipative particle dynamics: toward a mesoscale modeling of the polyelectrolyte brushes. J Chem Theory Comput. 2009; 5:3245–3259.
  • SmithW. A replicated data molecular dynamics strategy for the parallel Ewald sum. Comput Phys Commun. 1992; 67:392–406.
  • LeslieM, GillanMJ. The energy and elastic dipole tensor of defects in ionic crystals calculated by the supercell method. J Phys C: Solid State Phys. 1985; 18:973–982.
  • GrootRD. Electrostatic interactions in dissipative particle dynamics – simulation of polyelectrolytes and anionic surfactants. J Chem Phys. 2003; 118:11265–11277.
  • Groot RD. Erratum: electrostatic interactions in dissipative particle dynamics – simulation of polyelectrolytes and anionic surfactants [J Chem Phys. 2003; 118:11265], J Chem Phys. 2003; 119:10454.
  • LeesAW, EdwardsSF. The computer study of transport processes under extreme conditions. J Phys C: Solid State Phys. 1972; 5:1921–1929.
  • PrinsenP, WarrenPB, MichelsMAJ. Mesoscale simulations of surfactant dissolution and mesophase formation. Phys Rev Lett. 2002; 89:148302.
  • BirdRB, HassagerO, ArmstrongRC, CurtisCF. Dynamics of polymeric liquids, Vols. 1–2. New York: Wiley; 1977.
  • KremerK, GrestGS. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys Rev A. 1986; 33:3628–3631.
  • KremerK, GrestGS. Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J Chem Phys. 1990; 92:5057–5086.
  • MarkoJF, SiggiaED. Stretching DNA. Macromolecules. 1995; 28:8759–8770.
  • MorsePM. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev. 1929; 34:57–64.
  • FanX, Phan-ThienN, ChenS, WuX, NgTY. Simulating flow of DNA suspension using dissipative particle dynamics. Phys Fluids. 2006; 18:063102.
  • PanW, CaswellB, KarniadakisGE. A low-dimensional model for the red blood cell. Soft Matter. 2010; 6:4366–4376.
  • PivkinIV, KarniadakisGE. A new method to impose no-slip boundary conditions in dissipative particle dynamics. J Comp Phys. 2005; 207:114–128.
  • VerletL. Computer ‘experiments’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev. 1967; 159:98–103.
  • AllenMP, TildesleyDJ. Computer simulation of liquids. Oxford: Clarendon Press; 1987.
  • BesoldG, VattulainenI, KarttunenM, PolsonJM. Towards better integrators for dissipative particle dynamics simulations. Phys Rev E. 2000; 62:R7611–R7614.
  • LoweCP. An alternative approach to dissipative particle dynamics. Europhys Lett. 1999; 47:145–151.
  • AndersenHC. Molecular dynamics at constant pressure and/or temperature. J Chem Phys. 1980; 72:2384–2393.
  • PetersEAJF. Elimination of time step effects in DPD. Europhys Lett. 2004; 66:311–3117.
  • StoyanovSD, GrootRD. From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat. J Chem Phys. 2005; 122:114112.
  • NoséS. A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys. 1984; 81:511–519.
  • HooverWG. Canonical dynamics: equilibrium phase-space distribution. Phys Rev A. 1985; 31:1695–1697.
  • KoopmanEA, LoweCP. Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations. J Chem Phys. 2006; 124:204103.
  • BerendsenHJC, PostmaJPM, van GunsterenWF, DiNolaA, HaakJR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984; 81:3684–3690.
  • JakobsenAF. Constant-pressure and constant-surface tension simulations in dissipative particle dynamics. J Chem Phys. 2005; 122:124901.
  • GroppW, LuskE, SkjellumA. A High-performance, portable implementation of the MPI message passing interface. Parallel Comput. 1996; 22:789–828.
  • TodorovIT, SmithW, TrachenkoK, DoveMT. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006; 16:1911–1918.
  • EssmannU, PereraL, BerkowitzML, DardenT, LeeH, PedersenLG. A smooth particle mesh Ewald method. J Chem Phys. 1995; 103:8577–8593.
  • MitchellDJ, TiddyGJT, WaringL, BostockT, McDonaldMP. Phase behaviour of polyoxyethylene surfactants with water. Mesophase structures and partial miscibility (cloud points). J Chem Soc Faraday Trans. 1983; 179:975–1000.
  • JohanssonE. Simulating fluid flow and heat transfer using dissipative particle dynamics. Department of Energy Sciences, Faculty of Engineering, Lund University; http://www.ht.energy.lth.se/fileadmin/ht/Kurser/MVK160/2012/Erik_Johansson.pdf2012.
  • YamamotoS, MaruyamaY, HyodoS. Dissipative particle dynamics study of spontaneous vesicle formation of amphiphilic molecules. J Chem Phys. 2002; 116:5842–5849.
  • ChapmanS, CowlingTG. The mathematical theory of non-uniform gases. Cambridge: Cambridge University Press; 1952.
  • SkordosPA. Initial and boundary conditions for the lattice Boltzmann method. Phys Rev E. 1993; 48:4823–4842.
  • BhatnagarPL, GrossEK, KrookM. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys Rev. 1954; 94:511–525.
  • QianYH, d'HumièresD, LallemandP. Lattice BGK models for Navier-Stokes equation. Europhys Lett. 1992; 17:479–484.
  • DellarPJ. Bulk and shear viscosities in lattice Boltzmann equations. Phys Rev E. 2001; 64:031203.
  • LallemandP, LuoL-S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys Rev E. 2000; 61:6546–6562.
  • d'HumièresD, GinzburgI, KrafczykM, LallemandP, LuoL-S. Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil Trans Roy Soc Lond A. 2002; 360:437–451.
  • ChenY, OhashiH, AkiyamaM. Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations. Phys Rev E. 1994; 50:2776–2783.
  • InamuroT, YoshinoM, InoueH, MizunoR, OginoF. A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J Comput Phys. 2002; 179:201–215.
  • HeX, ChenS, DoolenGD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys. 1998; 146:282–300.
  • HeX, LuoL-S. Lattice Boltzmann model for the incompressible Navier-Stokes equation. J Stat Phys. 1997; 88:927–944.
  • MattilaK, HyväluomaJ, RossiT, AspnäsM, WesterholmJ. An efficient swap algorithm for the lattice Boltzmann method. Comp Phys Comms. 2007; 176:200–210.
  • MartysNS, ChenH. Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys Rev E. 1996; 53:743–750.
  • GuoZ, ZhengC, ShiB. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E. 2002; 65:046308.
  • PremnathKN, AbrahamJ. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow. J Comput Phys. 2007; 224:539–559.
  • ShanX, ChenH. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E. 1993; 47:1815–1819.
  • ShanX, ChenH. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. Phys Rev E. 1994; 49:2941–2948.
  • LishchukSV, CareCM, HallidayI. Lattice Boltzmann algorithm for surface tension with greatly reduced microcurrents. Phys Rev E. 2003; 67:036701.
  • SpencerTJ, HallidayI, CareCM. Lattice Boltzmann equation method for multiple immiscible continuum fluids. Phys Rev E. 2010; 82:066701.
  • D'OrtonaU, SalinD, CieplakM, RybkaRB, BanavarJR. Two-color nonlinear Boltzmann cellular automata: surface tension and wetting. Phys Rev E. 1995; 51:3718–3728.
  • ZouQ, HeX. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids. 1997; 9:1591–1598.
  • InamuroT, YoshinoM, OginoF. A non-slip boundary condition for lattice Boltzmann simulations. Phys Fluids. 1995; 7:2928–2930.
  • HouS, ZouQ, ChenS, DoolenG, CogleyAC. Simulation of cavity flow by the lattice Boltzmann method. J Comp Phys. 1995; 118:329–347.
  • GuoZ, ShiB, ZhengC. A coupled lattice BGK model for the Boussinesq equations. Int J Numer Meth Fl. 2002; 39:325–342.
  • HallidayI, LawR, CareCM, HollisA. Improved simulation of drop dynamics in a shear flow at low Reynolds number and capillary number. Phys Rev E. 2006; 73:056708.
  • GoujonF, MalfreytP, TildesleyDJ. Mesoscopic simulation of entanglements using dissipative particle dynamics: application to polymer brushes. J Chem Phys. 2008; 129:034902.
  • AfsharY, SchmidF, PishevarA, WorleyS. Exploiting seeding of random number generators for efficient domain decomposition parallelization of dissipative particle dynamics. Comp Phys Comms. 2013; 184:1119–1128.
  • SwiftMR, OsbornWR, YeomansJM. Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett. 1995; 75:830–833.
  • LaddAJC, VerbergR. Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys. 2001; 104:1191–1251.
  • YuD, MeiR, LuoL-S, ShyyW. Viscous flow computations with the method of lattice Boltzmann equation. Prog Aerosp Sci. 2003; 39:329–367.
  • AxnerL, BernsdorfJ, ZeiserT, LammersP, LinxweilerJ, HoekstraAG. Performance evaluation of a parallel sparse lattice Boltzmann solver. J Comp Phys. 2008; 227:4895–4911.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.