347
Views
19
CrossRef citations to date
0
Altmetric
Article

Study of thermodynamic properties of imidazolium-based ionic liquids and investigation of the alkyl chain length effect by molecular dynamics simulation

, &
Pages 1070-1078 | Received 18 Nov 2012, Accepted 02 Apr 2013, Published online: 14 Jun 2013

REFERENCES

  • BlanchardLA, GuZ, BrenneckeJF. High-pressure phase behavior of ionic liquid/CO2 systems. J Phys Chem B. 2001;105:2437–2444.
  • SeddonKR. Room-temperature ionic liquids: neoteric solvents for clean catalysis?. Kinet Catal. 1996;37:693–697.
  • EarleMJ, SeddonKR. Ionic liquids. Green solvents for the future. Pure Appl Chem. 2000;72:1391–1398.
  • PooleCF, PooleSK. Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A. 2010;1217:2268–2286.
  • MacFarlaneDR, SeddonKR. Ionic liquids – progress on the fundamental. Aust J Chem. 2007;60:3–5.
  • KanaiK, NishiT, IwahashiT, OuchiY, SekiK, HaradaY, Shin,S. Electronic structures of imidazolium-based ionic liquids. J Electron Spectrosc Rel Phenom. 2009;174:110–115.
  • JeonY, SungJ, KimD, SeoC, CheongH, OuchiY, OzawaR, HamaguchiH. Structural change of 1-butyl-3-methylimidazolium tetrafluoroborate + water mixtures studied by infrared vibrational spectroscopy. J Phys Chem B. 2008;112:923–928.
  • ZhaoH. Innovative applications of ionic liquids as “green” engineering liquids. Chem Eng Commun. 2006;193:1660–1677.
  • Swapnil DharaskarA. Ionic liquids (a review): the green solvents for petroleum and hydrocarbon industries. Res J Chem Sci. 2012;2:80–85.
  • LimBH, ChoeWH, ShimJJ, RaCS, TumaD, LeeH, LeeCS. High-pressure solubility of carbon dioxide in imidazolium-based ionic liquids with anions [PF6] and [BF4]. Korean J Chem Eng. 2009;26:1130–1136.
  • BuhlerG, ZharkouskayaA, FeldmannC. Ionic liquid based approach to nanoscale functional materials. Solid State Sci. 2008;10:461–465.
  • FengR, ZhaoD, GuoY. Revisiting characteristics of ionic liquids: a review for further application development. J Environ Prot. 2010;1:95–104.
  • WeltonT. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev. 1999;99:2071–2084.
  • SowmiahS, SrinivasadesikanV, TsengMC, ChuY. On the chemical stabilities of ionic liquids. Molecules. 2009;14:3780–3813.
  • BerthodA, Carda-BrochS. A new class of solvents for CCC: the room temperature ionic liquids. J Liq Chromatogr Relat Technol. 2003;26:1493–1508.
  • AndreM, LoidlJ, LausG, SchottenbergerH, BentivoglioG, WurstK, OnganiaKH. Ionic liquids as advantageous solvents for headspace gas chromatography of compounds with low vapor pressure. Anal Chem. 2005;77:702–705.
  • PlechkovaNV, SeddonKR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123–150.
  • ChauvinY, Olivier-BoubigouHO. Nonaqueous ionic liquids as reaction solvents. Chem Tech. 1995;26:25–30.
  • WangY, TianM, BiW, RowKH. Application of ionic liquids in high performance reversed-phase chromatography. Int J Mol Sci. 2009;10:2591–2610.
  • PredelT, SchlückerE, WasserscheidP, GerhardD, ArlW. Ionic liquids as operating fluids in high pressure applications. Chem Eng Technol. 2007;30:1475–1480.
  • KeskinS, Kayrak-TalayD, AkmanU, HortacsuO. A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluids. 2007;43:150–180.
  • MinamiI. Ionic liquid in tribology. Molecules. 2009;14:2286–2305.
  • WasserscheidP, VanHalR, BösmannA. 1-n-Butyl-3-methylimidazolium ([Bmim]) octylsulfate – an even ‘greener’ ionic liquid. Green Chem. 2002;4:400–404.
  • WasserscheidP, WeltonT. Ionic liquids in synthesis. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2002.
  • GujarAC, WhiteMG. Ionic liquids as catalysts, solvents and conversion agents. Catalysis. 2009;21:154–190.
  • KowsariMH, AlaviS, AshrafizaadehM, NajafiB. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient. J Chem Phys. 2009;129:224508–224521.
  • KoishiT, FujikawaS. Static and dynamic properties of ionic liquids. Mol Simulat. 2010;36:1237–1242.
  • LiuZ, WuXi, WangW. A novel united-atom force field for imidazolium-based ionic liquids. Phys Chem Chem Phys. 2006;8:1096–1104.
  • RaabeG, KöhlerJ. Thermodynamical and structural properties of imidazolium based ionic liquids from molecular simulation. J Chem Phys. 2008;128:154509–154516.
  • ShekaariH, MansooriY, SadeghiR. Density, speed of sound, and electrical conductance of ionic liquid 1-hexyl-3-methyl-imidazolium bromide in water at different temperatures. J Chem Thermodyn. 2008;40:852–859.
  • ForesterTR, SmithW. Warrington: CCLRC, Daresbury Laboratory; 1995. Available from http://www.stfc.ac.uk/CSE/randd/ccg/software/DL_POLY/25526.aspx.
  • FrischMJ, TrucksGW, SchlegelHB, ScuseriaGE, RobbMA, CheesemanJR, ZakrzewskiVG, MontgomeryJJA, StratmannRE, BurantJC, DapprichS, MillamJM, DanielsAD, KudinKN, StrainMC, FarkasO, TomasiJ, BaroneV, CossiM, CammiR, MennucciC, PomelliC, AdamoS, CliffordJ, OchterskiGA, PeterssonPY, AyalaQ, CuiK, MorokumaDK, MalickAD, RabuckK, RaghavachariJB, ForesmanJ, CioslowskiJV, OrtizBB, StefanovG, LiuA, LiashenkoP, PiskorzI, KomaromiR, GompertsRL, MartinDJ, FoxT, KeithMA, Al-LahamCY, PengA, NanayakkaraC, GonzalezM, ChallacombePMW, GillB, JohnsonW, ChenMW, WongJL, AndresC, GonzalezM, Head-GordonES, Replogle, PopleJA. GAUSSIAN 98, (Revision A.3). Pittsburgh: Gaussian, Inc.; 1998.
  • NoseS. A unified formulation of the constant temperature molecular dynamics methods. J Phys Chem. 1984;81:511–525.
  • AllenMP, TildesleyDJ. Computer simulation of liquids. Oxford: Clarendon Press; 1987.
  • CornellWD, CieplakP, BaylyCI, GouldIR, MerzKM, FergusonDM, SpellmeyerDC, FoxT, CaldwellJW, KollmanPA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117:5179–5197.
  • MacKerellADJr., BashfordD, BellottM, DunbrackRL, EvanseckJD, FieldMJ, FischerS, GaoJ, GuoH, HaS, Joseph-McCarthyD, KuchnirL, KuczeraK, LauFTK, MattosC, MichnickS, NgoT, NguyenDT, ProdhomB, ReiherWEIII, RouxB, SchlenkrichM, SmithJC, StoteR, StraubJ, WatanabeM, Wiórkiewicz-KuczeraJ, YinD, KarplusM. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616.
  • JorgensenWL, MaxwellDS, Tirado-TivesJ. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.
  • MayoSL, OlafsonBD, GoddardWAIII. DREIDING: a generic force field. J Phys Chem B. 1990;94:8897–8909.
  • LopesJNC, PaduaAAH. Molecular force field for ionic liquids III:? imidazolium, pyridinium, and phosphonium cations; chloride, bromide, and dicyanamide anions. J Phys Chem B. 2006;110:19586–19592.
  • SadeghiR, ShekaariH, HosseiniR. Effect of alkyl chain length and temperature on the thermodynamic properties of ionic liquids 1-alkyl-3-methylimidazolium bromide in aqueous and non-aqueous solutions at different temperatures. J Chem Thermodyn. 2009;41:273–289.
  • WeingaertnerH. Understanding ionic liquids at the molecular level: facts, problems, and controversies. Angew Chem Int Ed. 2008;47:654–670.
  • de AndradeJ, BöesES, StassenH. Computational study of room temperature molten salts composed by 1-alkyl-3-methylimidazolium cations force-field proposal and validation. J Phys Chem B. 2002;106:13344–13351.
  • BorodinO. Relation between heat of vaporization, ion transport, molar volume, and cation–anion binding energy for ionic liquids. J Phys Chem B. 2009;113:12353–12357.
  • Del PópoloMG, VothGA. On the structure and dynamics of ionic liquids. J Phys Chem B. 2004;108:1744–1752.
  • FrenkelD, SmitB. Understanding molecular simulation: from algorithms to applications. New York: Academic Press; 1996.
  • NodaA, HayamizuK, WatanabeM. Pulsed-gradient spin − echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J Phys Chem B. 2001;105:4603–4610.
  • EveryHA, BishopAG, MacFarlaneDR, OräddG, ForsythM. Transport properties in a family of dialkylimidazolium ionic liquids. Phys Chem Chem Phys. 2004;6:1758–1765.
  • MargulisCJ, SternHA, BerneBJ. Computer simulation of a “green chemistry” room-temperature ionic solvent. J Phys Chem B. 2002;106:12017–12021.
  • MorrowTI, MaginnEJ. Molecular dynamics study of the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J Phys Chem B. 2002;106:12807–12813.
  • TokudaH, HayamizuK, IshiiK, SusanMABH, WatanabeM. Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J Phys Chem B. 2004;108:16593–16600.
  • TokudaH, HayamizuK, IshiiK, SusanMABH, WatanabeM. Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B. 2005;109:6103–6110.
  • TokudaH, IshiiK, SusanMABH, TsuzukiS, HayamizuK, WatanabeM. Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J Phys Chem B. 2006;110:2833–2839.
  • TokudaH, TsuzukiS, SusanMABH, HayamizuK, WatanabeM. How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J Phys Chem B. 2006;110:19593–19600.
  • Del PópoloMG, VothGA. On the structure and dynamics of ionic liquids. J Phys Chem B. 2004;108:1744–1752.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.