229
Views
11
CrossRef citations to date
0
Altmetric
Article

Benzene adsorption at the aqueous (0 1 1) α-quartz interface: is surface flexibility important?

, &
Pages 1093-1102 | Received 12 Feb 2013, Accepted 12 Apr 2013, Published online: 08 Jul 2013

REFERENCES

  • HerzbachD, BinderK, MuserMH. Comparison of model potentials for molecular-dynamics simulations of silica. J Chem Phys. 2005;123:124711.
  • LopesPEM, MurashovV, TaziM, DemchukE, MacKerellAD. Development of an empirical force field for silica. Application to the quartz-water interface. J Phys Chem B. 2006;110:2782–2792.
  • HassanaliAA, SingerSJ. Static and dynamic properties of the water/amorphous silica ineterface: a model for the undissociated surface. J Comput Aided Mater Des. 2007;14:53–63.
  • ColeDJ, PayneMC, CsanyiG, SpearingSM, CiacchiLC. Development of a classical force field for the oxidized Si surface: application to hydrophilic water bonding. J Chem Phys. 2007;127:204704.
  • HeinzH, VaiaRA, FarmerBL, NaikRR. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials. J Phys Chem C. 2008;112:17281–17290.
  • RaiteriP, GaleJD, QuigleyD, RodgerPM. Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: a new model for the calcite–water interface. J Phys Chem C. 2010;114:5997–6010.
  • HassanaliAA, ZhangH, KnightC, ShinYK, SingerSJ. The dissociated amorphous silica surface: model development and evaluation. J Chem Theory Comput. 2010;6:3456–3471.
  • SchneiderJ, Colombi CiacchiL. A classical potential to model the adsorption of biological molecules on oxidized titanium surfaces. J Chem Theory Comput. 2011;7:473–484.
  • PatwardhanSV, EmamiFS, BerryRJ, JonesSE, NaikRR, DeschaumeO, HeinzH, PerryCC. Chemistry of aqueous silica nanoparticle surfaces and the mechanism of selective peptide adsorption. J Am Chem Soc. 2012;143:6244–6256.
  • HillJR, SauerJ. Molecular mechanics potential for silica and zeolite catalysts based on ab-initio calculations. 1. Dense and microporous silica. J Phys Chem. 1994;98:1238–1244.
  • BrodkaA, ZerdaTW. Properties of liquid acetone in silica pores: molecular dynamics simulation. J Chem Phys. 1996;104:6319–6326.
  • ArgyrisD, ColeDR, StrioloA. Dynamic behaviour of interfacial water at the silica surface. J Phys Chem C. 2009;113:19591–19600.
  • CyganRT, LiangJJ, KalinichevAG. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B. 2004;108:1255–1266.
  • PredotaM, BanduraAV, CummingsPT, KubickiJD, WesolowskiDJ, ChialvoAA, MacheskyML. 1. Structure of surfaces and interfacial water from molecular dynamics by use of ab initio potentials. J Phys Chem B. 2004;108:12049–12060.
  • Cruz-ChuER, AksimentievA, SchultenK. Water–silica force field for simulating nanodevices. J Phys Chem B. 2006;110:21497–21508.
  • TomasioSD, WalshTR. Atomistic modelling of the interaction between peptides and carbon nanotubes. Mol Phys. 2007;105:221–229.
  • IoriF, FeliceD, MolinariE, CorniS. GolP: an atomistic force-field to describe the interaction of proteins with Au(111) surfaces in water. J Comput Chem. 2009;30:1465–1476.
  • LorenzCD, CrozierPS, AndersonJA, TravessetA. Molecular dynamics of ionic transport and electrokinetic effects in realistic silica channels. J Phys Chem C. 2008;112:10222–10323.
  • ButenuthA, MorasG, SchneiderJ, KoleiniM, KöppenS, MeissnerR, WrightLB, WalshTR, Colombi CiacchiL. Ab initio derived force-field parameters for molecular dynamics simulations of deprotonated amorphous-SiO2/water interfaces. Phys Status Solidi B. 2012;249:292–305.
  • WrightLB, RodgerPM, CorniS, WalshTR. GolP-CHARMM: first-principles based force-fields for the interaction of proteins with Au(111) and Au(100). J Chem Theory Comput. 2013;9:1616–1630.
  • SkeltonAA, WesolowskiDJ, CummingsPT. Investigating the quartz (10(1)over-bar0)/water interface using classical and ab initio molecular dynamics. Langmuir. 2011;27:8700–8709.
  • SkeltonAA, FenterP, KubickiJD, WesolowskiDJ, CummingsPT. Simulations of the quartz(10(1)over-bar1)/water interface: a comparison of classical force fields, ab initio molecular dynamics, and X-ray reflectivity experiments. J Phys Chem C. 2011;115:2076–2088.
  • HoTA, ArgyrisD, PapvassiliouCV, StrioloA, LeeLL, ColeDR. Interfacial water on crystalline silica: a comparative molecular dynamics simulation study. Mol Simulat. 2011;37:172–195.
  • PhanA, HoTA, ColeDR, StrioloA. Molecular structure and dynamics in thin water films at metal oxide surfaces: magnesium, aluminum, and silicon oxide. J Phys Chem C. 2012;116:15962–15973.
  • ForreyC, DouglasJF, GibsonMK. The fundamental role of flexibility on the strength of molecular binding. Soft Matter. 2012;8:6385–6392.
  • SeemanNC, BelcherAM. Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci. 2002;99:6451–6455.
  • EvansJS, SamudralaR, WalshTR, OrenEE, TamerlerC. Molecular design of inorganic-binding polypeptides. MRS Bull. 2008;33:514–518.
  • TamerlerC, KhatayevichD, GungormusM, KacarT, OrenEE, HnilovaM, SarikayaM. Molecular biomimetics: GEPI-based biological routes to technology. Biopolymers. 2010;94:78–94.
  • BriggsBD, KnechtMR. Nanotechnology meets biology: peptide-based methods for the fabrication of functional materials. J Phys Chem Lett. 2012;3:405–418.
  • HnilovaM, SoCR, OrenEE, WilsonBR, KacarT, TamerlerC, SarikayaM. Peptide-directed co-assembly of nanoprobes on mutlimaterial patterned solid surfaces. Soft Matter. 2012;8:4327–4334.
  • MirauPA, NaikRR, GehringP. Structure of peptides on metal oxide surfaces probed by NMR. J Am Chem Soc. 2011;133:18243–18248.
  • JuS, YeoWS. Quantification of proteins on gold nanoparticles by combining MALDI-TOF MS and proteolysis. Nanotechnology. 2012;23:135701.
  • WrightLB, WalshTR. Facet selectivity of binding on quartz surfaces: free energy calculations of amino-acid analogue adsorption. J Phys Chem C. 2012;116:2933–2945.
  • WrightLB, WalshTR. First-principles molecular dynamics simulations of NH+4 and CH3COO−  adsorption at the aqueous quartz interface. J Chem Phys. 2012;137:224702-1–224702-8.
  • WrightLB, WalshTR. Efficient conformational sampling of peptides adsorbed onto inorganic surfaces: insights from a quartz binding peptide. Phys Chem Chem Phys. 2013;15:4715–4726.
  • OrenEE, NotmanR, KimIW, EvansJS, WalshTR, SamudralaR, TamerlerC, SarikayaM. Probing the molecular mechanisms of quartz-binding peptides. Langmuir. 2010;26:11003–11009.
  • LeutyGM, TsigeM. Structure and dynamics of tetrahalomethane adsorption on (0 0 1) surfaces of graphite and alpha-quartz. J Phys Chem B. 2010;114:13970–13981.
  • ArgyrisD, ColeDR, StrioloA. Hydration structure on crystalline silica substrates. Langmuir. 2009;25:8025–8035.
  • NotmanR, WalshTR. Molecular dynamics studies of the interactions of water and amino acid analogues with quartz surfaces. Langmuir. 2009;25:1638–1644.
  • LindahlE, HessB, SpoelvanD. der, GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model. 2001;7:306–317.
  • MacKerellAD, BashfordD, BellottM, DunbrackRL, EvanseckJD, FieldMJ, FischerS, GaoJ, GuoH, HaS, Joseph-McCarthyD, KuchnirL, KuczeraK, LauFTK, MattosC, MichnickS, NgoT, NguyenDT, ProdhomB, ReiherWE, RouxB, SchlenkrichM, SmithJC, StoteR, StraubJ, WatanabeM, Wiorkiewicz-KuczeraJ, YinD, KarplusM. All-atom empirical potential for molecular modelling and dynamics studies of proteins. J Phys Chem B. 1998;102:3586–3616.
  • JorgensenWL, ChandrasekharJ, MaduraJD, ImpeyRW, KleinML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–935.
  • NeriaE, FischerS, KarplusM. Simulation of activation free energies in molecular dynamics. J Chem Phys. 1996;105:1902–1921.
  • MiyamotoS, KollmanPA. SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem. 1992;13:952–962.
  • NoséS. A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;52:255–268.
  • HooverWG. Canonical dynamics – equilibrium phase-space distributions. Phys Rev A. 1985;31:1695–1697.
  • HockneyRW, GoelSP, EastwoodJ. Quiet high-resolution computer models of a plasma. J Comput Phys. 1974;14:148–158.
  • ParrinelloM, RahmanA. Polymorphic transitions in single-crystals – a new molecular-dynamics method. J Appl Phys. 1981;52:7182–7190.
  • NoséS, KleinML. Constant pressure molecular-dynamics for molecular-systems. Mol Phys. 1983;50:1055–1076.
  • HessB. Determining the shear viscosity of model liquids from molecular dynamics simulations. J Chem Phys. 2002;116:209–217.
  • ShimY, JeongD, ChoiMY, KimHJ. Rotational dynamics of a diatomic solute in the room-temperature ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate. J Chem Phys. 2006;125:061102.
  • SkeltonAA, LiangTN, WalshTR. Interplay of sequence, conformation, and binding at the peptide–titania interface as mediated by water. ACS Appl Mater Inter. 2009;1:1482–1491.
  • JenaKC, HoreDK. Water structure at solid surfaces and its implications for biomolecule adsorption. Phys Chem Chem Phys. 2010;12:14383–14404.
  • SchneiderJ, Colombi CiacchiL. Specific material recognition by small peptides mediated by the interfacial solvent structure. J Am Chem Soc. 2012;134:2407–2413.
  • VelloreNA, YanceyJA, CollierG, LatourRA, StuartSJ. Assessment of the transferability of a protein force field for the simulation of peptide–surface interactions. Langmuir. 2010;26:7396–7404.
  • YanceyJA, VelloreNA, CollierG, StuartSJ, LatourRA. Development of molecular simulation methods to accurately represent protein-surface interactions: the effect of pressure and its determination for a system with constrained atoms. Biointerphases. 2010;5:85–94.
  • CollierG, VelloreNA, YanceyJA, StuartSJ, LatourRA. Comparison between empirical protein force field for the simulation of the adsorption behavior of structures LK peptides on functionalized surfaces. Biointerphases. 2012;7:1–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.