204
Views
3
CrossRef citations to date
0
Altmetric
Articles

Design of specific inhibitors of the protein tyrosine phosphatase SHP-2 by virtual screening and core hopping method

, , , , &
Pages 904-911 | Received 25 Mar 2013, Accepted 05 Jul 2013, Published online: 09 Aug 2013

References

  • ChanG, KalaitzidisD, NeelBG. The tyrosine phosphatase Shp2 (PTPN11) in cancer. Cancer Metastasis Rev. 2008;27(179):192.
  • MohiMG, NeelBG. The role of Shp2 (PTPN11) in cancer. Curr Opin Genet Dev. 2007;2007(17):23–30.
  • Vercauteren M, Remy E, Devaux C, Dautreaux B, Henry JP, Bauer F, Mulder P, Hooft van Huijsduijnen R, Bombrun A, Thuillez C, Richard V. Improvement of peripheral endothelial dysfunction by protein tyrosine phosphatase inhibitors in heart failure. Circulation. 2006;114:2498–2507.
  • NeelBG, GuH, PaoL. The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci. 2003;28:284–293.
  • TonksNK. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol. 2006;7:833–846.
  • QuCK. Role of the SHP-2 tyrosine phosphatase in cytokine-induced signaling and cellular response. Biochim Biophys Acta. 2002;1592:297–301.
  • ChanRJ, FengGS. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood. 2007;109:862–867.
  • TartagliaM, NiemeyerCM, FragaleA, SongX, BuechnerJ, JungA, HählenK, HasleH, LichtJD, GelbBD. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat Genet. 2003;34:148–150.
  • LohML, VattikutiS, SchubbertS, ReynoldsMG, CarlsonE, LieuwKH, ChengJW, LeeCM, StokoeD, BonifasJM, CurtissNP, GotlibJ, MeshinchiS, Le BeauMM, EmanuelPD, ShannonKM. Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis. Blood. 2004;103:2325–2331.
  • TartagliaM, MehlerEL, GoldbergR, ZampinoG, BrunnerHG, KremerH, vander BurgtI, CrosbyAH, IonA, JefferyS, KalidasK, PattonMA, KucherlapatiRS, GelbBD. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat Genet. 2001:465–468.
  • ChenL, SungSS, YipML, LawrenceHR, RenY, GuidaWC, SebtiSM, LawrenceNJ, WuJ. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol Pharmacol. 2006;70:562–570.
  • YuWM, GuvenchO, MackerellAD, QuCK. Identification of small molecular weight inhibitors of Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) via in silico database screening combined with experimental assay. J Med Chem. 2008;51:7396–7404.
  • EckMJ, PluskeyS, TrübT, HarrisonSC, ShoelsonSE. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Nature. 1996;379:277–280.
  • HofP, PluskeyS, Dhe-PaganonS, EckMJ, ShoelsonSE. Crystal structure of the tyrosine phosphatase SHP-2. Cell. 1998;92:441–450.
  • BarfordD, NeelBG. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure. 1998;6:249–254.
  • Schrodinger Suite. Core hopping. New York: Schrödinger, LLC; 2009.
  • WangJF, ChouKC. Insights from modeling the 3D structure of New Delhi metallo-beta-lactamse and its binding interactions with antibiotic drugs. PLoS One. 2011;6:e18414.
  • ChouKC, WeiDQ, ZhongWZ. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun. 2003;17:148–151.
  • Dea-AyuelaMA, Pérez-CastilloY, Meneses-MarcelA, UbeiraFM, Bolas-FernándezF, ChouKC, González-DíazH. HP-Lattice QSAR for dynein proteins: experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a Leishmania infantum sequence. Bioorg Med Chem. 2008;16:7770–7776.
  • Prado-PradoFJ, Martinez de la VegaO, UriarteE, UbeiraFM, ChouKC, González-DíazH. Unified QSAR approach to antimicrobials. 4. Multi-target QSAR modeling and comparative multi-distance study of the giant components of antiviral drug–drug complex networks. Bioorg Med Chem. 2009;17:569–575.
  • Prado-PradoFJ, González-DíazH, de la VegaOM, UbeiraFM, ChouKC. Unified QSAR approach to antimicrobials. Part 3: first multi-tasking QSAR model for input-coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg Med Chem. 2008;16:5871–5880.
  • DuQS, HuangRB, WeiYT, PangZW, DuLQ, ChouKC. Fragment-based quantitative structure–activity relationship (FB-QSAR) for fragment-based drug design. J Comput Chem. 2009;30:295–304.
  • HouX, DuJ, FangH, LiM. 3D-QSAR study on a series of Bcl-2 protein inhibitors using comparative molecular field analysis. Protein Pept Lett. 2011;18:440–449.
  • ChouKC. Structural bioinformatics and its impact to biomedical science. Curr Med Chem. 2004;11:2105–2134.
  • ChouKC. Molecular therapeutic target for type-2 diabetes. J Proteome Res. 2004;3:1284–1288.
  • SiroisS, WeiDQ, DuQ, ChouKC. Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci. 2004;44:1111–1122.
  • MaY, WangSQ, XuWR, WangRL, ChouKC. Design novel dual agonists for treating type-2 diabetes by targeting peroxisome proliferator-activated receptors with core hopping approach. PLoS One. 2012;7:e38546.
  • LiXB, WangSQ, XuWR, WangRL, ChouKC. Novel inhibitor design for hemagglutinin against H1N1 influenza virus by core hopping method. PLoS One. 2011;6:e28111.
  • CombiGlide2.5. New York, NY: Schrodinger LLC; 2009.
  • BermanHM, BattistuzT, BhatTN, BluhmWF, BournePE, BurkhardtK, FengZ, GillilandGL, IypeL, JainS, FaganP, MarvinJ, PadillaD, RavichandranV, SchneiderB, ThankiN, WeissigH, WestbrookJD, ZardeckiC. The Protein Data Bank. Acta Crystallogr D Biol Crystallogr. 2002;58:899–907.
  • ZhangX, HeY, LiuS, YuZ, JiangZX, YangZ, DongY, NabingerSC, WuL, GunawanAM, WangL, ChanRJ, ZhangZY. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J Med Chem. 2010;53:2482–2493.
  • FriesnerRA, BanksJL, MurphyRB, HalgrenTA, KlicicJJ, MainzDT, RepaskyMP, KnollEH, ShelleyM, PerryJK, ShawDE, FrancisP, ShenkinPS. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–1749.
  • Schrodinger-LLC. Schrodinger Suite 2009 Virtual Screening Workflow, Glide version 5.5. New York, NY: Schrodinger-LLC; 2009.
  • IrwinJJ, ShoichetBK. ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45:177–182.
  • ChouKC. Low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem. 1988;30:3–48.
  • ChouKC. The biological functions of low-frequency vibrations (phonons). 3. Resonance effects and allosteric transition. Biophys Chem. 1984;20:881–890.
  • WangJF, ChouKC. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Biochem Biophys Res Commun. 2009;390:608–612.
  • ChouKC. Low-frequency resonance and cooperativity of hemoglobin. Trends Biochem Sci. 1989;14:212–213.
  • ChouKC. The biological functions of low-frequency vibrations (phonons). 4. Resonance effects and allosteric transition. Biophys Chem. 1984;20:61–71.
  • ChouKC. The biological functions of low-frequency vibrations (phonons). VI. A possible dynamic mechanism of allosteric transition in antibody molecules. Biopolymers. 1987;26:285–295.
  • ChouKC, MaoB. Collective motion in DNA and its role in drug intercalation. Biopolymers. 1988;27:1795–1815.
  • ChouKC, ZhangCT, MaggioraGM. Solitary wave dynamics as a mechanism for explaining the internal motion during microtubule growth. Biopolymers. 1994;34:143–153.
  • JorgensenWL, DuffyEM. Prediction of drug solubility from structure. Adv Drug Deliv Rev. 2002;54:355–366.
  • QikProp3.2. New York, NY: Schrodinger LLC; 2009.
  • SinghKhD, KirubakaranP, NagarajanS, SakkiahS, MuthusamyK, VelmurganD, JeyakanthanJ. Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of Chikungunya virus nsP2 protease. J Mol Model. 2012;18:39–51.
  • LipinskiCA, LombardoF, DominyBW, FeeneyPJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46:3–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.