5,770
Views
62
CrossRef citations to date
0
Altmetric
Articles

DL_MONTE: a general purpose program for parallel Monte Carlo simulation

, &
Pages 1240-1252 | Received 20 May 2013, Accepted 05 Aug 2013, Published online: 25 Sep 2013

REFERENCES

  • PlimtonS. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.
  • TodorovIT, SmithW, TrachenkoK, DoveMT. DL_POLY_3: new dimensions in molecular dynamics simulations via massive parallelism. J Mater Chem. 2006;16:1911–1918.
  • EwaldPP. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys. 1921;64:253–287.
  • Forester TR, Smith W. The DL_POLY user's manual, 1994. Ref no. DL/SCI/TM100T.
  • van GunsterenWF, BerendsenHJC. Groningen molecular simulation (GROMOS) library manual. Groningen: BIOMOS; 1987.
  • MayoSL, OlafsonBD, GoddardWA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–8909.
  • CornellWD, CieplakP, BaylyCI, GouldIR, MerzKMJr, FergusonDM, SpellmeyerDC, FoxT, CaldwellJW, KollmanPA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117:5179–5197.
  • SuttonAP, ChenJ. Long range Finnis–Sinclair potentials. Philos Mag Lett. 1990;61:139–146.
  • GuptaR. Lattice relaxation at a metal surface. Phys Rev B. 1981;23:6265–6270.
  • DawMS, BaskesM. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29:6443–6453.
  • TersoffJ. New empirical approach for the structure and energy of covalent systems. Phys Rev B. 1988;37:6991–7000.
  • SmithW, ForesterTR. Parallel macromolecular simulations and the replicated data strategy. 1: The computation of atomic forces. Comput Phys Commun. 1994;79:52–62.
  • AllenMP, TildesleyDJ. Computer simulation of liquids. Oxford: Clarendon Press; 1989.
  • VlugtTJH, Garcia-PerezE, DubbeldamD, BanS, CaleroS. Computing the heat of adsorption using molecular simulations: the effect of strong coulombic interactions. J Chem Theory Comput. 2008;4:1107–1118.
  • LavrentievMY, AllanNL, BarreraG, PurtonJA. Ab initio calculation of phase diagrams of oxides. J Phys Chem B. 2001;105:3594–3599.
  • PurtonJA, AllanNL. Monte Carlo simulation of segregation in ceramic thin films: comparison of the MgO/MnO{1 0 0} and {2 1 0} surfaces. J Cryst Growth. 2006;294:130–136.
  • PurtonJA, BarreraGD, AllanNL, BlundyJD. Monte Carlo and hybrid Monte Carlo/molecular dynamics approaches to order–disorder in alloys, oxides, and silicates. J Phys Chem B. 1998;102:5202–5207.
  • FerryD, GelobA, SenzV, SuzanneJ, ToenniesJP, WeissH. Observation of the second ordered phase of water on the MgO(1 0 0) surface: low energy electron diffraction and helium atom scattering studies. J Chem Phys. 1996;105:1697–1701.
  • FerryD, PicaudS, HoangPNM, GirardetC, GiordanoL, DemirdjianB, SuzanneJ. The properties of a two-dimensional water layer on MgO(0 0 1). Surf Sci. 1998;409:101–116.
  • LangelW, ParrinelloM. Ab initio molecular dynamics of H2O adsorbed on solid MgO. J Chem Phys. 1995;103:3240–3252.
  • McCarthyML, SchenterGK, ScamehornCA, NicholasJB. Structure and dynamics of the water/MgO interface. J Phys Chem. 1996;100:16989–16995.
  • AllenJP, MarmierA, ParkerSC. Atomistic simulation of surface selectivity on carbonate formation at calcium and magnesium oxide surfaces. J Phys Chem C. 2012;116:13240–13251.
  • FoxH, HorsfieldA, GillanMJ. Methods for calculating the desorption rate of an isolated molecule from a surface: water on MgO(0 0 1). Surf Sci. 2007;601:5016–5025.
  • FoxH, GillanMJ, HorsfieldA. Methods for calculating the desorption rate of molecules from a surface at non-zero coverage: water on MgO(0 0 1). Surf Sci. 2009;603:2171–2178.
  • FrenkelD, SmitB. Understanding molecular simulation. 2nd ed.San Diego, London: Academic Press; 2002.
  • AdamsDJ. Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid. Mol Phys. 1975;29:307–311.
  • ColleR, SalvettiD. A general method for approximating the electronic correlation energy in molecules and solids. Theor Chim Acta. 1975;37:1404–1408.
  • GojA, ShollDS, AktenED, KohenD. Atomistic simulations of CO2 and N2 adsorption in silica zeolites: the impact of pore size and shape. J Phys Chem B. 2002;106:8367–8375.
  • PlantDF, MaurinG, DerocheI, GaberovaL, LlewellynPK. CO2 adsorption in alkali cation exchanged Y faujasites: a quantum chemical study compared to experiments. Chem Phys Lett. 2006;426:387–392.
  • HirotaniA, MizukamiK, MiuraR, TakabaH, MiyaT, FahmiA, StirlingA, KuboM, MiyamotoA. Grand canonical Monte Carlo simulation of the adsorption of CO2 on silicalite and NaZSM-5. Appl Surf Sci. 1997;120:81–84.
  • MaurinG, LlewellynP, PoyetT, KuchtaB. Influence of extra-framework cations on the adsorption properties of X-faujasite systems: microcalorimetry and molecular simulations. J Phys Chem B. 2005;109:125–129.
  • MaurinG, BelmabkhoutY, PirngruberG, GaberovaL, LlewellynP. CO2 adsorption in LiY and NaY at high temperature: molecular simulations compared to experiments. Adsorption. 2007;13:453–460.
  • BulanekR, FrolichK, FrydovaE, CicmanecP. Microcalorimetric and FTIR study of the adsorption of carbon dioxide on alkali–metal exchanged FER zeolites. Top Catal. 2010;53:1349–1360.
  • MontanariT, BuscaG. On the mechanism of adsorption and separation of CO2 on LTA zeolites: an IR investigation. Vib Spectrosc. 2008;46:45–51.
  • DunneJA, MariwalsR, RaoM, SircarS, GorteRJ, MyersAL. Calorimetric heats of adsorption and adsorption isotherms. 1. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on silicalite. Langmuir. 1996;12:5888–5895.
  • DunneJA, RaoM, SircarS, GorteRJ, MyersAL. Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites. Langmuir. 1996;12:5896–5904.
  • PapadopoulosGK, JobicH, TheodorouDN. Transport diffusivity of N2 and CO2 in silicalite: coherent quasielastic neutron scattering measurements and molecular dynamics simulations. J Phys Chem B. 2004;108:12748–12756.
  • BabaraoR, JiangJW. Diffusion and separation of CO2 and CH4 in silicalite, C-168 schwarzite, and IRMOF-1: a comparative study from molecular dynamics simulation. Langmuir. 2008;24:5474–5484.
  • van den BerghJ, BanSA, VlugtTJH, KapteijnF. Modeling the loading dependency of diffusion in zeolites: the relevant site model. J Phys Chem C. 2009;113:17840–17850.
  • DerocheI, MaurinG, BorahBJ, YashonathS, JobicH. Diffusion of pure CH4 and its binary mixture with CO2 in faujasite NaY: a combination of neutron scattering experiments and molecular dynamics simulations. J Phys Chem C. 2010;114:5027–5034.
  • MaurinG, LlewellynPL, BellRG. Adsorption mechanism of carbon dioxide in faujasites: grand canonical Monte Carlo simulations and microcalorhnetry measurements. J Phys Chem B. 2005;109:16084–16091.
  • Garcia-SanchezA, AniaAO, ParraJB, DubbeldamD, VlugtTJH, KrishnaR, CaleroS. Transferable force field for carbon dioxide adsorption in zeolites. J Phys Chem C. 2009;113:8814–8820.
  • JaramilloE, ChandrossM. Adsorption of small molecules in LTA zeolites. 1. NH3, CO2, and H2O in zeolite 4A. J Phys Chem B. 2004;108:20155–20159.
  • BabaraoR, HuZQ, JiangJW, ChempathS, SandlerSI. Storage and separation of CO2 and CH4 in silicalite, C-168 schwarzite, and IRMOF-1: a comparative study from Monte Carlo simulation. Langmuir. 2007;23:659–666.
  • HarrisJG, YungKH. Carbon dioxide's liquid–vapor coexistence curve and critical properties as predicted by a simple molecular model. J Phys Chem. 1995;99:12021–12024.
  • CyganRT, LiangJJ, KalinichevAG. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. J Phys Chem B. 2004;108:1255–1266.
  • BushuevYG, SastreG. Atomistic simulations of water and organic templates occluded during the synthesis of zeolites. Micropor Mesopor Mater. 2010;129:42–53.
  • KerisitS, WeareJH, FelmyAP. Structure and dynamics of forsterite-scCO2/H2O interfaces as a function of water content. Geochim Cosmochim Acta. 2012;84:137–151.
  • WatsonGW, KelseyET, de LeeuwNH, HarrisDJ, ParkerSC. Atomistic simulation of dislocations, surfaces and interfaces in MgO. J Chem Soc, Faraday Trans. 1996;92:433–438.
  • ArtioliG, LambertiC, MarraGL. Neutron powder diffraction study of orthorhombic and monoclinic defective silicalite. Acta Crystallogr B. 2000;56:2–10.
  • HriljacJA, EddyMM, CheethamAK, DonohueJA, RayGJ. Powder neutron diffraction and 29Si MAS NMR studies of siliceous zeolite-Y. J Solid State Chem. 1993;106:66–72.
  • WiseWS. New occurence of faujasite in Southeastern California. Am Mineral. 1982;67:794–798.
  • LimWT, ChoiSY, ChoiJH, KimYH, HeoNH, SeffK. Single crystal structure of fully dehydrated fully K+-exchanged zeolite Y (FAU), K71Si121Al71O384. Micropor Mesopor Mater. 2006;92:234–242.
  • YamazakiT, KatohM, OzawaS, OginoY. Adsorption of CO2 over univalent cation-exchanged ZSM-5 zeolites. Mol Phys. 1993;80:313–324.
  • PillaiRS, PeterSA, JasraRV. CO2 and N2 adsorption in alkali metal ion exchanged X-faujasite: grand canonical Monte Carlo simulation and equilibrium adsorption studies. Micropor Mesopor Mater. 2012;162:143–151.