376
Views
15
CrossRef citations to date
0
Altmetric
Articles

Adsorption of hydrogen in covalent organic frameworks using expanded Wang–Landau simulations

, &
Pages 71-79 | Received 04 Jun 2013, Accepted 03 Sep 2013, Published online: 24 Dec 2013

References

  • WangQ, JohnsonJK. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. J Chem Phys. 1999;110:577–586.
  • SimonyanVV, DiepP, JohnsonJK. Molecular simulation of hydrogen adsorption in charged single-walled carbon nanotubes. J Chem Phys. 1999;111:9778–9783.
  • GordonPA, SaegerRB. Molecular modeling of adsorptive energy storage: hydrogen storage in single-walled carbon nanotubes. Ind Eng Chem Res. 1999;38:4647–4655.
  • CaoD, FengP, WuJ. Molecular simulation of novel carbonaceous materials for hydrogen storage. Nano Lett. 2004;4:1489–1492.
  • ChengHM, YangQH, LiuC. Hydrogen storage in carbon nanotubes. Carbon. 2001;39:1447–1454.
  • YangQ, ZhongC. Molecular simulation of adsorption and diffusion of hydrogen in metal–organic frameworks. J Phys Chem B. 2005;109:11862–11864.
  • PanL, SanderMB, HuangX, LiJ, SmithM, BittnerE, BockrathB, JohnsonJK. Microporous metal–organic materials: promising candidates as sorbents for hydrogen storage. J Am Chem Soc. 2004;126:1308–1309.
  • HanSS, FurukawaH, YaghiOM, GoddardWA. Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc. 2008;130:11580–11581.
  • CaoD, LanJ, WangW, SmitB. Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. Angew Chem. 2009;121:4824–4827.
  • HanSS, Mendoza-CortesJL, GoddardWA. Recent advances on simulation and theory of hydrogen storage in metal–organic frameworks and covalent organic frameworks. Chem Soc Rev. 2009;38:1460–1476.
  • GarberoglioG. Computer simulation of the adsorption of light gases in covalent organic frameworks. Langmuir. 2007;23:12154–12158.
  • Mendoza-CortesJL, GoddardWA, FurukawaH, YaghiOM. A covalent organic framework that exceeds the DOE 2015 volumetric target for H2 uptake at 298 K. J Phys Chem Lett. 2012;3:2671–2675.
  • DürenT, BaeYS, SnurrRQ. Using molecular simulation to characterise metal–organic frameworks for adsorption applications. Chem Soc Rev. 2009;38:1237–1247.
  • MyersAL, MonsonPA. Adsorption in porous materials at high pressure: theory and experiment. Langmuir. 2002;18:10261–10273.
  • MyersA. Thermodynamics of adsorption in porous materials. AIChE J. 2002;48:145–160.
  • MyersAL. Equation of state for adsorption of gases and their mixtures in porous materials. Adsorption. 2003;9:9–16.
  • HillTL. Theory of physical adsorption. Adv Catal. 1952;4:212–258.
  • RuthvenDM. Principles of adsorption and adsorption processes. New York, NY: John Wiley & Sons; 1984.
  • HicksJM, DesgrangesC, DelhommelleJ. Characterization and comparison of the performance of IRMOF-1, IRMOF-8 and IRMOF-10 for CO2 adsorption in the subcritical and supercritical regimes. J Phys Chem C. 2012;116:22938–22946.
  • DesgrangesC, DelhommelleJ. Evaluation of the grand canonical partition function using expanded Wang–Landau simulations. I. Thermodynamic properties in the bulk and at the liquid–vapor phase boundary. J Chem Phys. 2012;136:184107.
  • DesgrangesC, DelhommelleJ. Evaluation of the grand canonical partition function using expanded Wang–Landau simulations. II. Adsorption of atomic and molecular fluids in a porous material. J Chem Phys. 2012;136:184108.
  • HanSS, FurukawaH, YaghiOM, GoddardWA. Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc. 2008;130:11580–11581.
  • GazenmullerG, CampPJ. Applications of Wang–Landau sampling to determine phase equilibria in complex fluids. J Chem Phys. 2007;127:154504.
  • WangFG, LandauDP. Determining the density of states for classical statistical models: a random walk algorithm to produce a flat histogram. Phys Rev E. 2001;64:056101.
  • WangFG, LandauDP. Efficient multiple range random walk algorithm to calculate density of states. Phys Rev Lett. 2001;86:2050–2053.
  • YanQ, FallerR, de PabloJJ. Density-of-states Monte Carlo method for simulation of fluids. J Chem Phys. 2002;116:8745–8749.
  • ShellMS, DebenedettiPG, PanagiotopoulosAZ. An improved Monte Carlo method for direct calculation of the density of states. J Chem Phys. 2003;119:9406–9411.
  • DesgrangesC, DelhommelleJ. Phase equilibria of molecular fluids via hybrid Monte Carlo Wang–Landau simulations: applications to benzene and n-alkanes. J Chem Phys. 2009;130:244109.
  • AleksandrovT, DesgrangesC, DelhommelleJ. Vapor–liquid equilibria of copper using hybrid Monte Carlo Wang–Landau simulations. Fluid Phase Equ. 2010;287:79–83.
  • ShellMS, DebenedettiPG, PanagiotopoulosAZ. Generalization of the Wang–Landau method for off-lattice simulations. Phys Rev E. 2002;66:056703.
  • ShellMS, DebenedettiPG, PanagiotopoulosAZ. Flat-histogram dynamics and optimization in density of states simulations of fluids. J Phys Chem B. 2004;108:19748–19755.
  • Luettmer-StrathmannJ, RampfF, PaulW, BinderK. Transitions of tethered polymer chains: a simulation study with the bond fluctuation lattice model. J Chem Phys. 2008;128:064903.
  • DesgrangesC, KastlEA, AleksandrovT, DelhommelleJ. Optimisation of multiple time-step hybrid Monte Carlo Wang–Landau simulations in the isobaric–isothermal ensemble for the determination of phase equilibria. Mol Simul. 2010;36:544–551.
  • DesgrangesC, HicksJM, MagnessA, DelhommelleJ. Phase equilibria of polyaromatic hydrocarbons by hybrid Monte Carlo Wang–Landau simulations. Mol Phys. 2010;108:151–158.
  • DesgrangesC, NgaleK, DelhommelleJ. Prediction of critical properties for Naphthacene, Triphenylene and Chrysene by Wang–Landau simulations. Fluid Phase Equilib. 2012;322–323:92–96.
  • NgaleKN, DesgrangesC, DelhommelleJ. Wang–Landau configurational bias Monte Carlo simulations: vapour–liquid equilibria of alkenes. Mol Simul. 2012;38:653–658.
  • AleksandrovT, DesgrangesC, DelhommelleJ. Numerical estimate for boiling points via Wang–Landau simulations. Mol Simul. 2012;38:1265–1270.
  • LyubartsevAP, MartsinovskiAA, ShevkunovSV, Vorontsov-VelyaminovPN. New approach to Monte Carlo calculation of the free energy: method of expanded ensembles. J Chem Phys. 1992;96:1776–1783.
  • EscobedoF, de PabloJJ. Expanded grand canonical and Gibbs ensemble Monte Carlo simulation of polymers. J Chem Phys. 1996;105:4391–4394.
  • AbreuCRA, EscobedoFA. A general framework for non-Boltzmann Monte Carlo sampling. J Chem Phys. 2006;124:054116.
  • EscobedoFA, Martinez-VeracoecheaFJ. Optimized expanded ensembles for simulations involving molecular insertions and deletions. I. Closed systems. J Chem Phys. 2007;127:174103.
  • EscobedoFA, Martinez-VeracoecheaFJ. Optimization of expanded ensemble methods. J Chem Phys. 2008;129:154107.
  • ShiW, MaginnEJ. Continuous fractional component Monte Carlo: an adaptive biasing method for open system atomistic simulations. J Chem Theory Comput. 2007;3:1451–1463.
  • MullerM, PaulW. Measuring the chemical potential of polymer solutions and melts in computer simulations. J Chem Phys. 1994;100:719–724.
  • SinghJK, ErringtonJR. Calculation of phase coexistence properties and surface tensions of n-alkanes with grand canonical transition-matrix Monte Carlo simulation and finite-size scaling. J Phys Chem B. 2006;110:1369–1376.
  • PaluchAS, ShenVK, ErringtonJR. Comparing the use of Gibbs ensemble and grand canonical transition-matrix Monte Carlo methods to determine phase equilibria. Ind Eng Chem Res. 2008;47:4533–4541.
  • RaneKS, MuraliS, ErringtonJR. Monte Carlo simulation methods for computing liquid–vapor saturation properties of model systems. J Chem Theory Comput. 2013;9:2552–2566.
  • MittalJ, ErringtonJR, TruskettTM. Thermodynamics predicts how confinement modifies the dynamics of the equilibrium hard-sphere fluid. Phys Rev Lett. 2006;96:177804.
  • ChopraR, TruskettTM, ErringtonJR. Excess-entropy scaling of dynamics for a confined fluid of dumbbell-shaped particles. Phys Rev E. 2010;82:041201.
  • SideriusDW, ShenVK. Use of the grand canonical transition-matrix Monte Carlo method to model gas adsorption in porous materials. J Phys Chem C. 2013;117:5861–5872.
  • LiuJ, LeeJY, PanL, ObermyerRT, SimizuS, ZandeB, LiJ, SankarS, JohnsonJK. Adsorption and diffusion of hydrogen in a new metal–organic framework material:[Zn(bdc)(ted)0.5]. J Phys Chem C. 2008;112:2911–2917.
  • NoguchiD, TanakaH, KondoA, KajiroH, NoguchiH, OhbaT, KanohH, KanekoK. Quantum sieving effect of three-dimensional Cu-based organic framework for H2 and D2. J Am Chem Soc. 2008;130:6367–6372.
  • El-KaderiHM, HuntJR, Mendoza-CortésJL, CôtéAP, TaylorRE, O'KeeffeM, YaghiOM. Designed synthesis of 3D covalent organic frameworks. Science. 2007;316:268–272.
  • Mendoza-CortésJL, HanSS, FurukawaH, YaghiOM, GoddardWAIII. Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. J Phys Chem A. 2010;114:10824–10833.
  • VargaftikNB, VinoradovYK, YarginVS. Handbook of physical properties of liquids and gases. New York: Begell House; 1996.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.